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SUMMARY 

From the viewpoint of the suffering to the unexpected situations in the design process, it is desirable to ensure 

the structural performance such as a redundancy, a robustness and a repairability. The cumulative damage and 

residual resistant performance after inelastic response are important indexes to establish the design guideline 

considering these performance. In order to estimate these damage indexes, it is necessary to simulate accurately 

the behaviour of the structure until the ultimate states such as the buckling or the fracture of the steel members. 

This paper proposed the analytical methods based on the cumulative damage index which predicts the ductility at 

the maximum strength and the restoring force and hysteresis model. It shows a good agreement of the test 

results. 
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1. INTRODUCTION 

 

In recent years, the terrible earthquake events that were unexpected in the design process have 

occurred in the world, such as the 2011 off the Pacific coast of Tohoku Earthquake. From the 

viewpoint of the suffering to the unexpected situations, it is desirable to ensure the structural 

performance such as redundancy, robustness and repairability. It can be said that the cumulative 

damage and residual resistant performance after inelastic response are important indexes to establish 

the design guideline considering these ultimate states performance. In order to estimate these damage 

indexes, it is necessary to simulate accurately the behaviour of the structure until the ultimate states 

such as buckling or fracture of members. 

These ultimate states of members such as buckling or fracture would cause the unstable situations on 

the steel members or the steel structure. And also, several analysis methods or models at the above 

ultimate states of the steel members have been proposed. For example, FEM analysis can simulate a 

strong nonlinear inelastic behaviour of members. However, these detailed analytical methods have 

some difficulty to use in the design process. This paper proposes a simple model and analytical 

methods which have high applicability and rationality about steel beams subjected to inelastic cyclic 

loading. 

Herein, Figure 1.1 compares the hysteresis loops of analytical results which have experienced the 

same maximum plastic deformation. As shown in this Figure, the hysteresis behaviour is not same by 

the difference of the time-displacement history. From these results, it is suggested that it would be 

judged the same maximum plastic damage not considering the different cumulative damage 

experienced in the design process, but there are any questions with that. 

It is widely recognized that Manson-Coffin law and Miner’s low are the effective evaluation methods 

of the damage on steel beam subjected to constant cyclic loadings. However, in case of above random 

plastic cyclic loadings, these methods are restricted to adopt for the cumulative damage prediction. In 

this paper, the evaluation method of the cumulative fatigue damage is proposed. 

 

 



 
 

Figure 1.1. Comparison of hysteresis loops 

 

 

2. OUTLINE OF DATABASE 

 

2.1. Past Test Data 

 

The strength, ductility and hysteresis loops of steel beams subjected to inelastic cyclic loadings are 

reviewed with a large number of past references, from which a database has been structured. Total size 

of test data is 134 which were reported in Japanese past papers from 1975 to 2010. A part of the 

database in Japanese can be downloaded from the following URL. 

URL: http://www.rs.kagu.tus.ac.jp/tito-lab/rinkD.html 

 

2.2. Material Properties, Slenderness Ratio and Width - Thickness Ratio 

 

The yield strength, tensile strength, Young’s modulus and elongations from the material test results 

have been stored in the database. Furthermore, the slenderness ratio and width-thickness ratio shown 

in past papers has been structured. However, because the slenderness ratio or width-thickness ratio 

weren’t indicated in partly papers, these values were got by the specimen in original papers. 

 

2.3. Loading Type and Path 

 

The loading types are classified as; cantilever, pin-supported simple beam and fix-supported beam. 

And also, the loading paths are classified as; constant amplitude cyclic loading, gradual increase 

loading, and random loading. 

 

2.4. Failure Mode 

 

The failure modes observed in past papers are classified as; lateral buckling and local buckling. These 

failure modes shown in the papers are stored in the database. 

 

2.5. Pickup Strength and Ductility on Load Deformation Curves 

 

From the hysteresis loops of test results, the load - cumulative deformation curve is abstracted as 

shown in Figure 2.1. And also, the strength and ductility on the curve are picked up. 

 

2.6. Consideration of Database 

 

From the database, the relation of absorbing energy and cycle number is illustrated in Figure 2.2. From 

the results, it is confirmed that the absorbing energy is in a relation of the exponentiation with cycle 

number. In addition, it has been confirmed that the relation of other variables and test results do not 

show such a clear relations. 

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

図1 履歴曲線の一例 

M/Mp M/Mp 

θ/θp θ/θp 

最大塑性率θ/θp=4 最大塑性率θ/θp=4 Maximam Plastic Deformation 

θ/θp=4 

Maximam Plastic Deformation 

θ/θp=4 



 
 

Figure 2.1. Pickup points of strength and ductility 

 

 

 
 

Figure 2.2. Relation between absorbing energy and cycle number 

 

 

3. PROPOSAL OF DAMAGE EVALUATION METHODS AND CUMULATIVE DAMAGE 

INTEX  

 

3.1. Evaluation of Energy Absorbing Capacity 

 

According to the database and Figure 2.2, the relation between energy absorption capacity and cycle 

number until the loads reaches the maximum strength is formulized as; 
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where cηm is the cumulative plastic deformation, sηm is the energy absorption capacity until the load 

reaches the maximum strength, and c, k are constants. Furthermore, the constants are determined from 

the database, and c = 1.26, k = -0.432, respectively. Nem is the half effective cycle number and γm is the 

amplitude deviation defined in next section. 

 

3.1.1 Cycle Number until Maximum Strength: Nem 

In this paper, a half cycle is defined as one cycle illustrated as Figure 3.1. As shown in this figure, a 

half cycle over 5% energy of maximum absorbing energy is regarded as effective cycle, however, the 

cycle less than 5% is ignored. And also, Nem is defined as the sum of the effective cycle. According to 

this rule, a cycle with small amplitude after the large amplitude experienced is not ignored. In this 

example as shown in Figure 3.1, the cycle number until the load reaches the maximum strength is 

counted as 7, but the effective cycle number is counted as 5. The above cycle is renewed at each cycle 
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by consideration with the effective cycle which would cause the plastic damage. 

3.1.2. Deviation of Amplitude until Maximum Strength: γm 

An index γm which means the deviation of the amplitude until a load reaches the maximum strength is 

defined as; 
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where cηm(+) is the absorbed energy on the positive side, cηm(-) is the absorbed energy on the negative 

side as shown in Figure 2.1-(c). If the same amplitude in positive and negative side is loaded, γm 

becomes 0.5. And the unidirectional such as monotonic loading is loaded, γm becomes 1.0. 

 

3.2. Determination Method of Unknown Parameter in Evaluation Index 

 

To predict the cηm using Eqn.(3.1), it is necessary to determine the unknown parameters (sηm, Nem, γm) 

beforehand. Herein, it is widely recognized that the skeleton curve under cyclic loaded as shown in 

Figure 2.1-(b) is almost similar to the load deformation curve subjected to monotonic loading. From 

this knowledge, the absorbed energy in the skeleton curve is determined by reference of past test 

results subjected to monotonic loading and the past proposed equations. 

 

3.3. Formularization of Evaluation Index related to Damage 

 

From the Eqn. (3.1), the following expression is obtained; 
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By use of an arbitrarily constant D, the index on cycle-i is expressed as; 
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Furthermore, the deviation amplitude defined as Eqn. (3.2) on cycle-i is expressed as; 
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From the Eqn. (3.4) and (3.5), it means that the load reaches the maximum strength when D becomes 1. 

And also, it means that the load increase when D is below 1, it means the strength is deteriorated when 

D exceeds 1. 

 

3.4. Fomulari zation of Evaluation Index related to Damage 

 

Index D about all test data is calculated, and the results are shown in Figure 5. From the Figure 5, it is 

observed that some of the precision of evaluation shows good, however any results shows the double 

or half for the test result. On the next chapter, the effects of each parameters related to evaluation and 

the cause of the errors are investigated in detail. 

 



 
 

Figure 3.1. Example of half-cycle absorbing energy and effective cyclic number 

 

 

4. ANALYSYS OF DAMAGE EVALUATION AND CONSIDERATION 

 

4.1. Effects of Parameters Related to Damage Evaluation and Characteristics of Member 
 

From the prior examination of database and test data of load-deformation curve, cηm, sηm, Nem and γem 

are recognized as an important index. Herein, these indexes are focused on the consideration of the 

effects of the precious prediction. Especially, the following parameters are considered as parametric 

studies: 

(1) λx : the general slenderness ratio 

(2) βeq : the equivalent width thickness ratio 

(3) sηm: the energy absorption capacity until the load reaches the maximum strength 

(4) cηm /sηm: the ratio of the absorbed energy on each side to the energy absorption capacity 

where the general slenderness ratio λx is given as; 
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where L is the span length, ix is the major axis radius of gyration, εy is the yield strain. 

And the equivalent width-thickness ratio βeq is given as; 
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where b/tf is flange width thickness ratio, d/tw is web width thickness ratio, εyf, εyw are flange and web 

yield strain. And b, d are the width of flange and web, tf, tw are the thickness of flange and web, 

respectively. 

 

To investigate the effects of the slenderness ratio and the width thickness ratio of the members, Figure 

4.1 shows the relation of index D vs. each parameter. As shown in this figure, it can’t be said that there 

is the clear relation each other. The reason is that the index D represented in Eqn. (3.4) does not 

include these parameters directly. 

Furthermore, Figure 4.2 shows the relation of index D vs. the energy absorption capacity sηm, cηm /sηm. 

And also, the prediction errors of index D to test results are shown in Figure 4.2. From the Figure 

4.2-(a), it is recognized that the errors of index D are increased in the low sηm regions, however, the 

index D estimates the cumulative damage excessively. On the other hand, in the large sηm region, the 

index D underestimates the cumulative damage. 
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4.2. Comparison of Proposed Method and Miner’s Law 
 

The Miner’s law is widely recognized as the damage prediction index under the incremental and cyclic 

loading. Herein, the following index based on the Miner’s law is applied: 
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where hηi is the absorbed energy under half cycle, Nmi is the half cycle number until it reaches the 

maximum strength under the constant half cycle. 

 

The comparison of the proposed method, the Miner’s law of Eqn. (4.3) and test results are shown in 

Figure 4.3. But the Miner’s law isn’t shown in case 3 (Figure 4.3-(c)), because this case isn’t obtained 

from Eqn. (4.3). From the results of Figure 4.3, the values of the D calculated by the proposed method 

surpass those from the rest results, i.e. the proposed method evaluates the energy absorption capacity 

of the test specimens on the safe side. The calculation error between the rest results and the calculated 

values decreases with the increase of the cycle number. The Miner’s law shows the reasonable 

agreement with the test results in the first cycle. However, the proposed method indicates more close 

agreement than the Miner’s law with the cycle number increases. 
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Figure 4.1. index D vs. the slenderness ratio and the width thickness ratio 
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Figure 4.2. index D vs. the energy absorption capacity 
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Figure 4.3. Comparison of Proposed Method and Miner’s Law 

 

 

5. PROPOSAL OF HYSTERESIS MODEL  

 

5.1. Description of Skeleton Shift Model 

 

 “Skeleton Shift Model (Meng, Ohi and Takanashi, 1992)” has been proposed to express strain 

hardening or stress degrading phenomena of steel members under cyclic loading. In this proposed 

model, an original form of the skeleton curve is composed of tri-linear curve and hysteresis loops are 

expressed by RO model (Ramberg and Osgood, 1943). A special feature of the Skeleton Shift Model 

is that skeleton curve moves depending on experienced plastic strains. A model of skeleton curve and 

the hysteresis rule of skeleton shift model are shown in Figure 5.1. 

 

5.2. Skeleton Curve 

 

In this paper, the load-deformation curve of test data is expressed as tri-linear curve as shown in 

Figure 5.1-(a), and the abstracted tri-linear model is applied to the skeleton curve model for the 

analytical model. 

 

5.3. Shift Coefficient under Cyclic Loading 

 

On the hysteresis rule of the skeleton shift model, the skeleton curve is moved depending on the 

plastic deformation experienced on the opposite side as shown in Figure 5.1-(b). The shift coefficient 
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has not been proposed and formularized in the past papers yet. Herein, the regression equation of this 

shift coefficient is determined by reference of the database as; 
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5.4. Hysteresis Rule during Unloading Process 

 

As the previous mentioned, the hysteresis loop during unloading is expressed as RO curve. However, 

the little errors have been pointed out in the past researches under the random loadings. Herein, to 

improve these errors, the following rules are proposed. 

 

When the loci of load deformation curve moves over the outside loop, the following model is applied 

to modify this behaviour: 

Tangent stiffness K
*
 on the RO curve is given as; 
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where K0 is initial stiffness, Ka is secant stiffness, Pu is the unloading loads, Pt is the target loads. r is 

the coefficient in Ramberg-Osgood function.  

The regression equation of this coefficient is determined by reference of the database as: 
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As shown in Figure 5.2-(a), when the loci of load deformation curve moves over the outside loop, the 

following relation hold; 

 

Kt > Kt’ (5.4-a) 

 

where Kt , Kt’ is; 

 

Kt  = K0･Ka / { Ka +r(K0 - Ka)}  (5.4-b) 

 

Kt’ = K0･Ka’ / { Ka’ +r(K0 - Ka’ )} (5.4-c) 

 

Ka’=(Pt – Pu’ ) / (δt –δu’ ) (5.4-d) 

 

in which Ka’ is secant stiffness between the re-unloading point and the target point, Pu’ is the 

re-unloading loads, δu’ is the re-unloading deformation. 

From the Eqn. (5.4), the following expression is obtained; 

 

Ka > Ka’ (5.5) 

 

To prevent the loci of load deformation curve moving over the outside loop, the hysteresis loop is 

modified as follows; 

 

Kt = Kt’ (5.6) 

 

Based on these calculations Eqn.(5.4) to Eqn. (5.6), r’ which is the modified coefficient r is 

determined as follows; 
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Also the following expression is obtained; 
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Figure 5.2-(b) shows the hysteresis loop modified by the Eqn. (5.8). 

 

5.5. Comparison of Hysteresis Loops of Test Result and Analytical Result by Proposal Method 

 

Figure 5.3 shows the comparisons of the hysteresis loops of test results and analytical results by 

proposal methods. From the Figure 5.3, it is observed that the analytical model has good agreements 

with the test results. 

 

 
 
 

Figure 5.1. Skeleton curve and hysteresis rule of the Skeleton Shift Model 

 

 

 
 

Figure 5.2. Hysteresis curve during unloading process 
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Figure 5.3. Comparison of test and analysis in hysteresis loop 

 

 

6. CONSLUSION 

 

In this paper, the cumulative damage index, which predicts the ductility at the maximum strength of 

the steel beam subjected to cyclic loadings, was formulated by the references in the database of a large 

number of past references. This index has good agreements with the test results in the database.  

And also, this paper proposed the analytical method, the restoring force and hysteresis model of steel 

beams subjected to cyclic loadings. To compare the analytical simulation with the test results of the 

database, the proposed methods and model can simulate effectively the ultimate states of steel beams. 
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