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SUMMARY: 
Vibration control systems in the form of shock and vibration isolators have been devised to provide dynamic 
protection to structural systems. Amongst such devices, fluid viscous dampers are found to have desirable 
performance to control shock loads. Fluid viscous dampers are attractive for enhancing the performance because 
they not only reduce the deformation demand but also the force transferred to the structure due to energy 
dissipation. Conventional linear fluid viscous dampers can dissipate only limited amount of energy, and are not 
as effective as nonlinear dampers for shock loads. This paper experimentally evaluates the performance of such 
dampers for shock loads, and presents the dynamic behavior of an example system. The mathematical 
formulation and relative performance of structures subjected to short-duration pulse excitations are discussed. 
The influence of the damper exponent α and coefficient of damper cα are also evaluated. The paper also presents 
some design charts, which can be used for preliminary decision on parameters of nonlinear dampers to be used in 
design.  
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1. INTRODUCTION 
 
Structural passive control systems primarily include energy dissipation and base isolation devices. A 
variety of passive energy dissipating devices has been developed during the past two decades such as 
the metallic dampers, friction dampers, visco-elastic dampers and the fluid viscous dampers. A 
comprehensive review of passive energy dissipation concepts and application is available in published 
literature (Soong and Dargush, 1997). The addition of passive energy dissipation devices to structural 
system reduces the excessive deformation and ductility demand and at the same time enhances its 
energy dissipation capacity.  The passive energy dissipation devices have been found to be effective 
for both short-duration loads (shock loads) as well as longer-duration loads (earthquake forces or wind 
loads). 
 
Among the energy dissipation devices, fluid viscous dampers (FVD) have been widely used in 
vibration control of various structural and mechanical systems. As pure viscous behavior may be 
achieved by forcing fluid through orifices (where damper force is proportional to velocity), a special 
role is played by fluid viscous dampers as passive energy dissipation devices (Pekcan et al., 1999, 
Soong and Dargush, 1997), and can also be utilized in base isolation (Makris, 1992). There are several 
potential equipment and mechanical systems whose performance can be greatly enhanced by using the 
right type/configuration of fluid viscous dampers. Fluid viscous dampers are especially attractive for 
enhancing the performance of structures because they not only reduce the deformation demand but 
also the force demand. 
 
The damper force of a nonlinear FVD is proportional to a fractional power-law of the velocity, whose 
exponent ranges between 0.1 and 1.0. The supplemental damping ratio can be obtained by evaluating 
the equivalence between a nonlinear and a linear fluid viscous damper. The criteria for evaluating the 



supplemental damping ratio for a nonlinear fluid viscous damper presented in literature are expressed 
in terms of energy dissipated (Lin and Chopra, 2002) or power consumption (Peckan et al., 1999). 
 
This paper presents the experimental work performed for modeling of nonlinear FVD subjected to 
shock excitation. It also discusses the dynamic behavior of single-degree-of-freedom (SDOF) system 
with linear and nonlinear FVDs when subjected to shock loading. The damping coefficient of damper, 
cα for a nonlinear damper is obtained by imposing the equivalence between a nonlinear and a linear 
fluid viscous damper. The shock spectra for an example pulse loading, which can be used for 
preliminary design of the dampers, has also been presented. 
 
 
2. FLUID VISCOUS DAMPERS 
 
2.1. Components 
 
Figure 2.1. shows a longitudinal cross section of a typical fluid viscous damper. It consists of a 
stainless steel piston, with a bronze orifice head, and a self-contained piston displacement 
accumulator. The damper is filled with a compressible viscous fluid which is generally non-
flammable, non-toxic, environmentally safe, and thermally stable. The dampers output force is 
resistive; therefore it acts in a direction opposite to that of the input motion. The means of energy 
dissipation is by heat transfer, i.e., the mechanical energy dissipated by the damper causes a heating of 
the dampers fluid and mechanical parts, and this thermal energy is transferred to the environment 
(Constantinou and Symans,1992). 
 
2.2. Operation 
 
Internal force is generated by the fluid damper due to pressure differential across the piston head. 
During the motion of the piston head, the fluid volume is changed by the product of travel and piston 
rod area. Since the fluid is compressible, this change in fluid volume is accompanied by the 
development of a spring like restoring force. This is prevented by the use of the accumulator. At 
higher frequency, the fluid viscous dampers exhibit strong stiffness. In general, this cutoff frequency 
depends on the design of the accumulator (Constantinou and Symans,1993).  
 
2.3. Mathematical modeling 
 
Fluid viscous dampers have the unique advantage of reducing the shearing and bending stresses at the 
same time, as the velocity-dependent maximum damping force is 90 degrees out of phase with the 
maximum deflection of the structure as shown in Fig. 2.2. In addition, installing FVDs in a structure 
does not alter its force displacement relationship and hence its dynamic modal characteristics 
(Martinez-Rodrigo and Romero, 2003). The ideal force output of a nonlinear FVD is proportional to a 
fractional power-law of the velocity is expressed as: 
 

sgn( )Df c u u


    (2.1) 

 
where fD is the damper force, c is the damping coefficient with units of force per velocity raised to the 
power , u  is the relative velocity between the two ends of the damper and sgn( )  is the signum 
function. The piston head consists of orifices that are designed with a series of specially shaped 
passages to alter flow characteristics with fluid speed. A schematic of this orifice is shown in Fig. 2.3. 
The damper with  = 1 is known as linear FVD in which damper force is proportional to the velocity. 
The damper with  < 1 is called a nonlinear FVD. Fig. 2.4. shows the force-velocity relationship of 
FVD wherein the peak dampers force is limited when velocity exponent is less than 1. This property 
demonstrates the efficiency of nonlinear FVD ( < 1) to limit peak damper force in minimizing high 
velocity shocks. This behavior is contrary to that of the linear FVD and thus makes the nonlinear 
FVDs attractive for control of impulse-type or short-duration loads. 



 
Figure 2.1. Typical longitudinal cross section of a fluid viscous  

damper (Constantinou and Symans,1992) 

 
Figure 2.2. Idealized force-
displacement relationship  

 
 
 

 
 

Figure 2.3. Fluidic control orifice 
 

 
Figure 2.4. Force-velocity relationship for of 

fluid viscous dampers 
 

 
2.4. Applications 
 
(Goel, 2005) and (Lin and Chopra, 2002) have proposed nonlinear FVDs for control of seismic 
response of SDOF system. Their study showed that nonlinear fluid viscous dampers can achieve 
essentially the same reduction in response but with significantly reduced damper force compared to 
linear damper for systems with very short periods. (Dicleli and Mehta, 2007) used Chevron braced 
frame with nonlinear fluid viscous dampers in the near-fault ground motion with peak ground velocity 
varying from 0.37 m/sec to 1.7 m/sec and velocity pulse periods varying from 1.1 sec to 5.0 sec. They 
found that the energy dissipated by the fluid viscous dampers prevented the buckling of braces and 
causes the frame members to remain within elastic limits. While the aforementioned studies have led 
to improved understanding of how fluid viscous dampers reduces earthquake-induced deformations, it 
is also important to understand the response of structure with these dampers to shock environment. In 
this paper, the use of nonlinear fluid viscous dampers in structural systems subjected to shock 
environment has been investigated.  
 
 
3. IMPULSE OR SHOCK LOADS 
 
Many structures are sometimes subjected to relatively large forces suddenly applied over a very short 
duration of time (impulse or shock loads). For typical shock loading, the force duration is short 
relative to the natural period of the structure, i.e td /Tn < 1, where td is the duration of loading and Tn is 
the fundamental time period of the structure. These forces can produce very high response. The 
maximum amplitude may occur during or after the application of the shock and its magnitude depends 
on the ratio of duration of the pulse to the natural period of the structure. The impulse often excites 
several natural frequencies of a complex structure, which may result in large cyclic stresses damaging 
the structure or impairing its performance. Examples of sources of impulse shock are free-fall impacts, 
collisions, explosions, gunfire, projectile impacts, high-speed fluid entry, aircraft landing and braking 
loads, and missile launching and staging (Harris and Crede, 1961).  

Line 1: Nonlinear Damper with α < 1 
Line 2: Linear Damper with α = 1 
Line 3: Nonlinear Damper with α > 1 
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4. MODELING OF NONLINEAR FVD SUBJECTED TO HALF-CYCLE SINE SHOCK  
 
4.1 Experimental setup 
 
The non-periodic nature of shock is experimentally simulated on a state-of-art shock testing machine 
as shown in Fig. 4.1. The shock testing machine works on the principle of free fall from a specified 
drop height thus imparting kinetic energy to the corset side of the machine. The shock is generated by 
lifting the corset to specified drop height and then releasing it to fall freely under gravity striking the 
buffer mass with specified rubber thickness interposed between steel plate and the buffer mass. The 
shock generated as a result of this is a half-cycle sine pulse at the damper fixed end, fitted in the corset 
assembly. The main purpose of shock tests conducted on the fluid viscous dampers was to measure the 
shock parameters, the acceleration and duration of the half sine shock pulse as input at the damper 
fixed end and response as output at the damper piston end. The programme for shock testing of 
dampers made use of the dampers supplied by Taylor Devices Inc, USA as described in Table 4.1.  
 
Table 4.1. Technical specifications of fluid viscous dampers. 

Sr.
No. 

Identification. No. Qty 
Weight 

(kg) 
Stroke 
(mm) 

Damper 
Exponent 

(α) 

Damper 
Coefficient cα 

(kNs/m) 
Remarks 

1 67DP-18921-01 02 82 ±100 0.80 420 Type-A 

2 67DP-18922-01 02 82 ±100 0.36 330 Type-B 
 
The shock parameters were measured at the damper fixed end and damper piston end. To record 
displacement time history of the mass and in turn displacement time history of the damper piston, a 
LVDT was connected between the mass and a bracket rigidly mounted on the corset platform. The 
data acquisition system connecting the LVDT and the sensors recorded the data for the displacement 
of the damper piston and the acceleration at damper fixed end and damper piston end. This data was 
recorded for specified shock amplitude generated by the corset striking the buffer mass with specified 
rubber thickness from a specified drop height and at a specified time interval. The test were conducted 
by using a 10 Tonne mass mounted on roller behind the damper piston end and gradually increasing 
the drop height (DH) from 50mm to 250mm and reducing the rubber thickness (RT) from 150mm to 
50mm. The band width for measurement of shock parameters by the sensors and the displacement by 
LVDT used for data acquisition for all the tests conducted was set at 4096 Hz. 
 

 
1. Striker  6. Mass 10 Tonne 

2. Corset Front  7. Rollers for Sliding Mass 

3. Fluid Viscous Damper 8. Corset Bed 

4. Bracket Damper Cylinder End 9. Pendulum Swings 

5. Bracket Damper Piston End 10. Corset Rear 

 
Figure 4.1. Schematic of Fluid Viscous Damper mounted on corset platform of shock test facility. 

 
4.2 Results of shock excitation on fluid viscous dampers 
 
During the experimental program, twelve tests were performed on each of the damper Type ‘A’ and 
Type ‘B’. The dampers were subjected to shock excitation for the shock generated by changing the 
drop height of the corset and the rubber thickness interposed between the buffer mass and a steel plate. 
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The noise in measured acceleration and displacement time-history data was filtered using a low pass 
filter process in MATLAB Toolbox.  The cut-off frequency for filtering were manually identified 
using the FFT of the measured acceleration and displacement time-history, and were chosen to ensure 
that the response behaviour was fully represented in the filtered time-history data. 
 
The filtered input time-history at the damper fixed end and the output time-history at the damper 
piston end and their corresponding shock response spectrum for one test on each of the damper are 
shown in Fig. 4.2. (a)-(c) for damper Type ‘A’ and in Figure 4.3. (a)-(c) for damper Type ‘B’. It can 
be seen from these figures; the accelerations at the damper piston ends are considerably reduced 
compared to the accelerations applied at the damper fixed end, which demonstrate the ability of fluid 
viscous dampers to attenuate shock pulse of considerable amplitude.  
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Figure 4.2. (a) Shock Input for Type ‘A’ Damper for RT150DH200, (b) Output Response for Type ‘A’ Damper 
for RT150DH200, (c) SRS of Shock Input and Output Response of Type ‘A’ Damper for RT150DH200 
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Figure 4.3. (a) Shock Input for Type ‘B’ Damper for RT150DH250, (b) Output Response for Type ‘B’ Damper 
for RT150DH250, (c) SRS of Shock Input and Output Response of Type ‘B’ Damper for RT150DH250 

 
4.3 Characterisation of dampers 
 
For the characterisation of dampers to shock excitation the sliding mass of 10 Tonne connected to the 
damper is assumed as a SDOF. This SDOF system is subjected to the shock excitation produced as a 
result of corset front striking the buffer mass from a specified height. The equation of motion for the 
damper mass system subjected to half-cycle sine shock P(t) for a duration td can be written as: 
 
For forced vibration phase: 
 

( )d dmu c u k u P t t t
          (4.1) 

 
For free vibration phase: 
 

0d dmu c u k u t t
           (4.2) 



The contribution of stiffness of the damper, kd is found to be negligible in response calculation and is 
not considered. The analytical response of displacement of the mass and in turn the displacement of 
the damper piston is calculated using the model for force-velocity as established for the sinusoidal 
excitation of the FVD in Eqn 1. The parameters α and cα supplied by the manufacturer are used in the 
calculation of response. The analytical and the measured time-history of displacement for duration of 
displacement of the mass and in turn the displacement of the piston of the damper was superimposed 
to see, whether the force-velocity model as established for sinusoidal excitation in Eqn. 1 for the 
damper still remain the same for shock excitation. These superimposed graphs are as shown in the 
Figure 4.4. (a) for the fluid viscous damper Type ‘A’ and in Figure 4.4.(b) for the fluid viscous damper 
Type ‘B’.  
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Figure 4.4. (a) Analytical and Measured Displacement Response of Type ‘A’ Damper for RT150DH200 
 (b) Analytical and Measured Displacement Response of Type ‘B’ Damper for RT150DH250 

 
The following observations are made from the superposition of the analytical and the measured 
response of displacements. 
1. The shape of the displacement time-history for the analytical and the measured response for both the 
damper Type ‘A’ and Type ‘B’ fairly agree indicating that the model for force-velocity as established 
for sinusoidal excitation still holds good for shock excitations. 
2. The analytical and the measured displacements for the duration of acceleration response at the 
damper piston end are within a range of 10% to 20% for the nonlinear damper Type ‘A’ with α = 0.8 
which is very close to a linear damper. This indicates that there is no change in the damping 
characteristics of a nonlinear FVD very close to linear FVD in shock excitation. 
3. Almost 80% of the result of superposition of the analytical and the measured response of 
displacement for the nonlinear damper Type ‘B’ shows that measured response is much lesser than the 
analytical response. To fit the measured response the coefficient of damper is increased in the 
analytical model so that the shape of the response is maintained and the difference in analytical and the 
measured response is within 20%. This indicates that for a highly nonlinear damper as of Type ‘B’ 
with α = 0.8, the damping properties of the damper may be increasing under excitation. In case of use 
of such highly nonlinear damper, the reason for this difference needs further investigation, to eliminate 
the possibility of this being observed due to instrumentation or experimental setup limitation.  
 
 
5. STRUCTURE WITH FVD SUBJECTED TO HALF-CYCLE SINE PULSE 
 
5.1 Linear FVD 
 
Considering a SDOF system equipped with linear FVD and subjected to a half- cycle sine pulse given 
by the Eqn. 5.1 with / 1/ 2d nt T  , which implies n   and / 2 /ndt T   .  

 

0( ) sinu t u t   (5.1) 
 



The energy dissipated by the FVD, WD, is given by 
 

/
2

0

D DW F du cudu cu dt
 

        
(5.2) 

 
where FD is the damper force, which is equal to cu for a linear FVD; c is the damping coefficient of 
linear FVD; and u is the relative velocity between the structure and the damper. Therefore, 
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Let / 2t   and 2 /dt d  , Eqn. 5.3 can then be written as 
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(5.4) 

 
The damping ratio contributed by the linear FVD can be expressed as /sd crc c  . Therefore, Eqn. 5.4 
can be written as: 
 

2
4 0

3
2 *0.58905D n sd
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W m 


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(5.5) 

 
5.2 Nonlinear FVD 
 
Considering a SDOF system equipped with nonlinear FVD and subjected to a half-cycle sine pulse 
given by the Eqn. 5.1 with / 1/ 2d nt T  , which implies n   and / 2 /ndt T   . The energy 

dissipated by the FVD, WD, is 
 

/
1

0

DW c uu du c u dt
 

 
 

      (5.6) 
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(5.7) 

 
Let / 2t   and 2 /dt d  , Eqn. 5.7 can then be written as follows: 
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where Γ is the gamma function. The energy dissipated is thus expressed as follows: 
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(5.10) 

 
The nonlinear and linear FVDs dissipate an equal amount of energy for a SDOF system subjected to 



half-cycle sine pulse excitation. Therefore, equating Eqn. 5.5 and Eqn. 5.10 we obtain: 
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For a linear fluid viscous damper, α=1 and κ=0.58905, and Eqn. 5.10 reduces to: 
 

2 sd nc m   (5.11) 
 

 
6. EQUATIONS OF MOTION  
 
The equation of motion for a SDOF system with mass m equipped with a non-linear FVD, and 
subjected to a half-cycle sine pulse 0( ) sinp t p t , is: 
 

0sgn( )mu cu ku c u u p sin t


         (6.1) 

or, 

2
02 sgn( )n n

c
u u u u u u Sin t

m
         

 
(6.2) 

 
In these equations, α is the damper exponent and cα is the damping coefficient, while the over dots 
represent derivatives with respect to time. The natural frequency of the structure is given by

/n k m   and is the natural damping ratio. When cα is non-zero and 1  , Eqn. 6.2 becomes 

nonlinear; therefore, the response u of the system depends nonlinearly on the excitation intensity ( )u t . 
 
 
7. DESIGN CHARTS OF SHOCK RESPONSE SPECTRUM 
 
The structural designer is usually interested in the maximum response quantities like displacement 0u , 

damper force 0f , lateral resisting force 0r , and time of maximum response 0t . Here, the design charts 
for maximum response of SDOF system without and with FVDs subjected to half- cycle sine pulse are 
presented in Fig. 7.1. These charts provide results for maximum non-dimensional displacement, 
damper force, and the time of maximum response. The maximum lateral resisting force 0r  can be 
evaluating by knowing the maximum displacement u0 and the stiffness k of the structure.  
 
7.1. Example System 
 
To illustrate the use of charts as shown in Fig. 7.1., consider the SDOF system in Fig. 7.2. is subjected 
to a half-cycle sine pulse as shown in Fig. 7.3. It is observed from Table 7.1. that the nonlinear FVD 
requires much lower supplemental damping and hence much smaller damping coefficient than the 
linear FVD for approximately the same values of peak responses for the given shock loading. The 
lower value of supplemental damping or the coefficient of damper means a much lower and compact 
size of nonlinear fluid viscous damper. Thus, knowing the natural period of the structure Tn and the 
duration td of the pulse shock, one can estimate the maximum displacement, amount of damping force 
on the system by the added linear α = 1  or nonlinear α < 1  FVD for a particular value of 
supplemental damping. It thus become easier for a designer to choose a most suitable nonlinear fluid 
viscous damper for the design of structural system with appropriate damper exponent α and damping 
coefficient cα for a given pulse shock from the design charts. 
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Figure 7.1. Maximum response of SDOF system subjected to half-cycle sine pulse.  

(a) Linear FVD (α = 1), and (b) Nonlinear FVD (α = 0.5) 
 

Example SDOF system  parameters: 
 
Mass (m) = 25000 kg 
 
Stiffness (k) = 9869×103 kN/m 
 
Natural Period Tn = 0.01 s 
 
Structural damping  ξ = 2% 

 
 

Figure 7.2. Schematic diagram of 
SDOF system. 

Figure 7.3. Half-cycle sine pulse 

 
Table 7.1. Peak responses of SDOF system. 

Maximum Response Quantity Without FVD Linear FVD (α = 1) Nonlinear FVD (α = 0.5) 
Displacement 0u (mm) 1.5242 1.032 0.7497 

Lateral Resisting Force 0r  (kN) 15042.33 10184.81 7398.79 

Damper Force 0f  (kN) - 3580.65 4991.33 

Time of maximum response 0t  (ms) 5 4.9 4.8 

Supplemental Damping Ratio sd  (%) - 30 30 

Coefficient of Damper c (kNs/m) - 9424.78 9306.90 

k/2 k/2 

m 

FVD 

P (t) 

40g 

  5ms  td 



For the example SDOF system, /d nt T  = 0.5. The maximum responses of example SDOF system 
without and with linear fluid damper (α = 1) and nonlinear fluid damper (α = 0.5) are found out using 
the response charts as shown in Fig. 7.1. These responses are tabulated in Table 7.1. 
 
8. CONCLUSIONS 
 
From the discussions presented in this paper, the following conclusions can be drawn:  
1. The force-velocity model as verified in sinusoidal excitation is found to be valid when the fluid 
viscous dampers are subjected to shock excitation. It is found that the damping properties of the 
nonlinear damper close to a linear damper subjected to shock excitation almost remain the same as in 
the sinusoidal excitation. However, the damping properties of a much nonlinear damper subjected to 
shock excitation are found to be considerably increased especially for shock pulse of larger magnitude 
and of shorter duration.  
2. For the same values of peak responses for the given shock loading the coefficient of damper for a 
nonlinear fluid viscous damper is much smaller than the linear fluid viscous damper indicating a much 
smaller and compact size of damper. 
3. The displacement and velocity decay at a much faster rate with the use of nonlinear dampers. This 
property can be utilized to improve the reliability of secondary systems mounted on the structure. 
4. Design charts can serve as a ready reference for the structural designer to choose the most 
appropriate nonlinear damper with suitable damper exponent and coefficient of damping for a 
particular half-sine pulse shock. 
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