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SUMMARY: 

In this study, the feasibility of DLV method for damage detection of output-only frame systems is 

experimentally explored based on their dynamic responses with the SSI algorithm for system identification. 

Conditions of both single and multiple damages at various locations have been considered. Both a white noise 

scenario and the El Centro earthquake are considered as the seismic inputs with full or partial observation on the 

acceleration responses of the floors. The scheme proves effective and robust at a single damage condition under 

both stationary and non-stationary input excitations. The scheme, however, is insufficient for multiple damage 

conditions when the structure is partially observed. In such circumstances, the input excitation is needed for a 

more precise damage assessment as illustrated in a previous work (Wang, Hsieh & Wang, 2011). This study 

gives further insights on the scheme in terms of effectiveness, robustness, and limitation for damage localization 

of frame systems from seismic response data. 
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1. INTRODUCTION 
 

In recent years, structural health monitoring (SHM) has become a very active field of research in civil 

engineering. Initiated in the early 1960s by the military and aerospace industries, the concept and 

technical development of damage detection has found widespread applications in many other areas. A 

SHM system is pragmatic only if integrated with reliable measures in dynamic testing, system 

identification and damage detection, along with appropriate indices for damage assessment. The 

natural forces such as earthquakes, winds, floods or sea waves are favorable over any artificial 

measures as they provide considerable input energy to effectively excite the dynamic characteristics of 

the target structure at no cost. System identification schemes that make a direct use of the recorded 

data (say, acceleration) at limited locations are of great interest for practical reasons.  Moreover, 

diagnosis techniques that are sensitive to moderate structural damages even in lack of knowledge of 

high-frequency modes are desired. 

 

Stiffness is intuitively the most direct physical parameter related to structural damages. However, the 

sensitivity analysis of stiffness-based approaches requires an accurate analytical model of the intact 

structure for reference. Synthesis of the stiffness matrix requires contributions of higher modes that are 

practically difficult to identify with fidelity, let alone the task to obtain an accurate analytical model of 
real-life structure. On the contrary, the flexibility matrix can be sufficiently synthesized with a limited 

number of low-frequency modes as the modal contribution decreases in proportion to the square of the 

corresponding natural frequency. Flexibility-based techniques therefore have been considered of great 

potential in damage localization of structures. The pioneering work of Pandey and Biswas (Pandey & 

Biswas, 1994) demonstrated that the damage locations of a wide-flange steel beam could be identified 

by interrogating the change in the flexibility matrix. This technique has been further extended for 

damage detection of plane trusses (Pandey & Biswas, 1995). The method of damage locating vectors 

(DLV) proposed by Bernal (Bernal, 2002) in 2002 indeed is a break-through for the flexibility-based 



approaches in structural damage detection. The concept of the DLV method is to identify the members 

with zero stress under some specific loading patterns, namely the DLVs that span the null space of the 

change in flexibility matrix of the structure before and after the damage state. Structural elements 

resulting with zero stresses (or internal forces) under the static loads of the DLVs are considered 

potentially damaged. The DLV technique is capable of identifying multiple damages in the structure 

via a truncated modal basis without a predetermined reference model. This methodology has also been 

adopted for damage localization of space trusses or plates by Gao et al. (Gao, Ruiz-Sandoval & 

Spencer, 2002; Gao, Spencer & Bernal, 2007) and Huynh et al. (Huynh, He & Tran, 2005). Duan et al 

(Duan et al, 2005) adopted the DLV method for damage assessment of both multiple mass-spring 

systems and plane trusses. It was concluded that, with only the first two or three modes considered, the 

damages at two different places could be identified. Huang et al. (Huang, Wang & Lee, 2012) 

explored the damage localization of frame structures from seismic acceleration responses using the 

DLV technique with ARX model for system identification. The potential of the DLV method in the 

detection of local damages from global seismic structural responses for frame systems was confirmed. 

 

The measurement of the natural or operating forces on real-life structures is generally formidable. 

Dynamic characteristics of the structures have to be extracted from the available output signals only. 

In such occasions, the stochastic subspace identification (SSI) technique (Van Overschee, & De Moor, 

1996; Alicioglu & Lus, 2008) can be adopted to identify structural parameters of the discrete-time 

state equation from the covariance functions of the measured output signals. Nevertheless, the 

flexibility matrix required by the DLV analysis cannot be explicitly extracted from output signals only. 

To overcome this obstacle, Bernal (Bernal & Gunes, 2006) revised the flexibility-based DLV method 

to comply with stochastic realization results in the context of a state-space representation noting that 

the null space of the flexibility change implicitly contains the damage localization information and that 

the DLVs in this null space can be estimated without the flexibility matrix. Wang et al. (Wang, Hsieh, 

& Wang, 2011) experimentally verified this revised scheme of damage localization analysis for frame 

structures using the seismic acceleration responses with the SRIM technique (Juang, 1997) for system 
identification. The input ground motion, however, was taken into account in compliance with the 

SRIM technique. 

 

Feasibility of the DLV method in association with the SSI technique for damage detection of planar 

frames has been explored numerically by Wang et al (Wang, Lin & Huang, 2012). As a further step to 

assess this technique under a more realistic condition, a series of shaking table tests has been 

conducted. Without loss of generality, a five-storey shear frame with diagonal bracings is considered. 

The damage conditions of the frame are simulated by partially removing some of the bracings. 

Conditions of both single and multiple damages at various locations have been considered. Both a 

white noise scenario and the 1940 El Centro earthquake are considered as the seismic inputs with full 

or partial observation on the acceleration responses of the floors. The white noise represents a 

stationary input disturbance, the assumption behind theoretical development of the stochastic analysis. 

While the case of El Centro earthquake is meant to verify the adaptability of the scheme when the 

input excitation is not stringently stationary. To comply with the output-only scenario, the information 

of ground motion is discarded in the stage of SSI analysis. 

 

 

2. STOCHASTIC SUBSPACE IDENTIFICATION 
 

A stochastic linear-invariant system is commonly represented in a discrete-time state-space model as 

(Van Overschee, & De Moor, 1996; Alicioglu & Lus, 2008): 
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where 
12)( ×∈ n

Rkx  and 
1)( ×∈ m

Rky  are respectively the state and output vectors at time instant k. 



nnR 22 ×∈A  is the system matrix and 
nmR 2×∈C  is the observation matrix. 

12)( ×∈ n
Rkw  and 

1)( ×∈ mRkv  are the un-measurable vector signals assumed to be zero-mean, stationary white noise 

vector sequences with the covariance matrices given by 
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where 
ww

R , 
wvR  and 

vv
R  are the covariance matrices of the noise sequences )(kw  and )(kv .  

It is assumed that the stochastic process is stationary (Pandey & Biswas, 1994). Since )(kw  and 

)(kv  are independent of )(kx , we have 
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The output covariance matrices can be defined as: 
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where 
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i R
×∈R  with i  being an arbitrary time lag, and 
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in which )]()([ kkE
TxxΣ =   

is the state covariance matrix.
  

  

By considering a sequence of N data for the output , y , and reorganizing the data in the output block 

Hankel matrix as 
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where the number of columns (j) is typically equal to 22 +− iN . The Toeplitz matrix 
mimi

i R
×

∈1|T may be expressed as 
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where the controllability matrix
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 . The Toeplitz matrix can be decomposed by singular value 

decomposition as 
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where 1S  is a diagonal matrix of the non-zero eigenvalues and 1U  , 1V  the corresponding left and 

right eigenvectors. By comparing Equ. (2.7) and (2.8), the observability matrix and controllability 

matrix can respectively be derived as 
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The observation matrix, C  , and system matrix, A  , can be extracted from iO
 
without difficulty. 

 

 

3. THE METHOD OF DAMAGE LOCATING VECTORS  
 

Bernal (Bernal, 2002; Bernal & Gunes, 2006) proposed that the structure subjected to the damage 

locating vectors, L , would undergo the same deformation before and after the damaged state. This 

statement immediately leads to 
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where 
FD  is the flexibility differential of the structure before and after damaged. When 

nrank F <)(D  (n  is the degree of freedom of the structure), the basis corresponds to the null space of 

FD  is the damage locating vectors, L , which can be derived from singular value decomposition of 

the flexibility differential of the structure before and after the damage state. Members with nearly zero 
stress under the loadings of DLVs are considered potentially damaged. 

 

The flexibility matrix of the structure can be expressed with the system matrices of the 

continuous-time state-space representation as 
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(3.1), the flexibility differential 
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where Q∆ id
QQ −=  and 0DDD =−=∆ id ~~~

 since the mass matrix is unchanged. By taking 

the singular value decomposition of Q∆ , the eigen-vectors 
Q

V
∆

0  correspond to the singular 

eigen-values is the damage locating vector 
qn

R
×∈L . Due to noise and numerical errors, the ideal 

singular eigen-values  are practically not existing. Therefore, Bernal suggests that the number of 

DLVs, q, is screened by 
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to the closest integer. Where 
Q∆

is  is the i-th eigenvalue of Q∆ .  Moreover, the normalized stress 

index 
ij

nsi
,

 of the j-th member or d.o.f. subjected to the i-th DLV, iL , is defined as 
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where ij ,
σ  is the stress or internal force of the j-th d.o.f. corresponding to i

L  . In addition, the 

weighted stress index 
j

WSI  is defined as 
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When ( )
max

WSI0.1WSI
jj

≤ , member j (or storey j) is considered potentially damaged. 

 

 

4. EXPERIMENTAL VERIFICATIONS 
 

A five-storey steel frame with diagonal bracings is devised for the shaking table tests. The damage 

conditions of the frame are simulated by removing some of the bracings. Conditions of both single and 

multiple damages have been considered. Both a white noise scenario and the 1940 El Centro 

earthquake are considered as the seismic inputs with full or partial observation on the acceleration 

responses of the floors in the testing program. The tests are arranged in the following manner: 

 

A. Full observation 

Single storey damaged – Case Ax (x=2,3,4 denoting the damaged storey); 

Multiple stories damaged –A15 (1F & 5F damaged), A135 (1F, 3F & 5F damaged) 

  B. Partial observation (Observing only Floors 1,3 and 5) 

    Single storey damaged – Case B1-135 (1F damaged), B3-135 (3F damaged); 

    Multiple stories damaged – Case B15-135 (1F & 5F damaged) 

 

4.1. Test Results 
 
I. White Noise 

A. Full observation 

The stress indices for cases with single-storey damage under the White Noise input from DLV 

analysis are illustrated in Fig. 1. In all the cases (A2, A3, A4), each of the damaged stories are 



identified without exception in accordance with the criterion suggested by Bernal. 

 

Fig. 2 shows the stress indices for cases (A15 and A135) with multiple-storey damage. The damaged 

stories in both cases are successfully identified. 

 

   

Figure 1. Stress Index under Full Observation (Single Storey Damaged, Input: White Noise) 

 

 

   

Figure 2. Stress Index under Full Observation (Multiple Stories Damaged, Input: White Noise) 

 
B. Partial observation (Observing only Floors 1, 3 and 5) 
To comply with the condition of partial observation, the accelerations of the 2nd and 4th floors are 

neglected in the system identification stage of SSI analysis. The damaged stories are set to be 

co-located with part of the observed floors. The stress indices with single or multiple damages are 

illustrated in Fig. 3.  In the cases (B1-135 and B3-135) with single-storey damage, the damaged 

locations are again identified as in the full observation. The scheme fails, however, to identify the 

damaged locations in case B15-135 where two stories are designated as damaged. 

 

     
 

Figure 3. Stress Index under Partial Observation (Observing 1, 3 & 5 F, Input: White Noise) 

 
II. El Centro Earthquake 

A. Full observation 

The stress indices from DLV analysis for the cases with single-storey damage under the El Centro 

earthquake are illustrated in Fig. 4. The damaged storey is correctly identified in all cases (A2, A3, 

A4). It is noted, however, that in case A2 not only the 2
nd

 storey is determined to be damaged but also 

the 3
rd

 storey where actually no damage is assigned. Nevertheless, the scheme still shows robustness to 

a certain extent even if the non-stationary nature of the earthquake is against the assumption behind 

the theoretical development of the SSI algorithm.  

 



   

Figure 4. Stress Index under Full Observation (Single Storey Damaged, Input: El Centro) 
 

 

   

Figure 5. Stress Index under Full Observation (Multiple Stories Damaged, Input: El Centro) 

 

B. Partial observation (Observing only Floors 1, 3 and 5) 
The damaged stories are again set to be co-located with part of the observed floors. The stress indices 

with single or multiple stories damaged are illustrated in Fig. 7. In the cases (B1-135 and B3-135) with 

single-storey damage, the damaged locations are again identified as in the full observation. The 
scheme fails also to identify the damaged locations in case B15-135 as for the White Noise excitation. 

 

      

Figure 7. Stress Index under Partial Observation (Observing 1, 3 & 5 F, Input: El Centro) 
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