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SUMMARY: 
Modern science connects the rise of strong earthquakes with the Lithospheric Plates tectonics of the Earth (95% 
of the earthquakes). The existence of dense net of seismostations and modern satellite GPS systems permits us to 
follow the behaviour of the Earth Lithospheric Plates and its separate parts permanently, particularly, to measure 
the displacements of points on the facial surface of the Lithospheric Plates and its separate parts and follow their 
change in time. It, in its turn, permits us to determine the stress-strain state of the plate and follow its change at 
the given time interval. 
 
The corresponding nonclassical three-dimensional problem of elasticity theory is solved. It is proved, that the 
solution becomes mathematically exact, when the functions entering the boundary conditions relative to 
displacements are polynomials. 
 
Following the dynamics of the stress-strain states change of Lithospheric Plates, it is possible to single out more 
seismodangerous zones of the Earth at the given moment. 
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1. INTRODUCTION 
 
The modern science connects the rise of strong earthquakes with the tectonics of Lithospheric plates of 
the Earth (≈95% of earthquakes) (Pichon et al (1973), Kasahara (1981)). And what are the 
Lithospheric plates of the Earth? 

 
It is known that the planet Earth is not homogeneous (the Earth radius = 6378 km) and consists of the 
earth crust, upper and lower mantles; outer and inner kernels, established on the base of seismic, 
geological and other investigations. 
 
As a rule, the essentially different speeds of propagation in the layers of longitudinal (Vp) and cross 
(shear) waves (Vs) are the distinctive feature of difference of these layers. 
 
The power (thickness) of the earth crust on the continents changes from 20 to 70 km, in the oceans 
from 5 to 15km. 
 
The earth crust is isolated from the upper mantle with Mokhorovichich (Mokho) interface, i.e. seismic 
border, on which the speed of the longitudinal elastic waves increases in jump-like way up to the value 
over 8km/sec., whereas in the earth crust it is usually 6-7 km/sec. (max Vp=7,4km/sec.) In the bounds 
of the earth crust three basic layeres are isolated by seismic characteristics: I sedimental layer (2,0≤Vp 
≤5,0 km/sec., h1=10÷25 km), II granitic layer (5,5≤Vp ≤6,0 km/sec., h2=30÷40 km),III basalt layer 
(6,5≤Vp ≤7,4 km/sec., h3=15÷20 km). 
 
The earth crust and part of the upper mantle up to the border on Aston sphere is called Lithosphere. 
The Lithosphere is split into some big pieces, which are called plates. The measures of the plates 
change from a hundred up to some thousand km. The biggest Lithospheric plates of the Earth are: 



Antarktida, Eurasian, Indian-Australian, African, South-American, North-American, Pacific, Filippine, 
Naska, Anatolian, Arabian and other Lithospheric plates. 
 
The geography of the seismic activity of the terrestrial globe points to the fact that the overwhelming 
majority of the earthquakes are grouped into relatively slender zones (“seismic zones”), seismic and 
tectonic activities of which are mainly ascribed to inter actions of adherent to each other Lithospheric 
plates, which are subjected to relative displacements along their contacting surfaces. Two types of 
tectonic movements are distinguished: 1) slow (century) and 2) quick (jump-like) connected with the 
earthquakes. 
 
In the base of seismic activity the process of accumulations in rock deformations, which when 
reaching at critical value 10-4 and by Rikitake data 4,7x10-5, brings to global destruction, the main part 
of the accumulations of the great potential of energy is isolated in the form of volumе P (longitudinal 
or primary) and S (secondary or shear) waves, which spread with speed Vp and Vs. 
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With the help of the speeds Vp, Vs the epicenter of the earthquake focus is determined. 
 
Having the data for three seismic stations, not lying in the same plane, the epicenter of the earthquake 
is determined with great exactness. 
 
From the stated above the underlined importance of determination of stress-strain states of the Earth 
Lithospheric plates and the monitoring of its change in time follows. For that it is possible to use 
measuring data of the rather dense net of the existing seismostations and satellite GPS systems, which, 
particularly, measure the values of the points displacements of the Lithospheric plates surface. 
 
In the paper the solutions of the corresponding three-dimensional problem of elasticity theory for one-
layered plate and multilayered packet from plates, permitting to find stress-strain states of the plate or 
the packet on the base of the data of seismostations and GPS systems are found. The corresponding 
problem is nonclassical boundary-value problem, as the conditions (they are six) are only given on the 
facial surface of the plate or the packet (the corresponding stresses tensor components are equal to 
zero, but the values of the points of this surface – as the data of seismostations and GPS systems are 
known). By the found solutions we have opportunity to follow the change of the stress-strain state and 
reveal the critical states as by time, as well as by place. 
 
 
2. THE BASIC EQUATIONS AND FORMULATION OF THE  
    BOUNDARY-VALUE PROBLEM 
 
Let us have a packet from N orthotropic layers, occupying area ,0:),,{( axzyxD   
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It is required to find the solution of the equations and correlations of three-dimensional problem of 
elasticity theory taking into account the volume forces (particularly the weight of the layers) and 
temperature actions by Duhamel-Neyman model (Aghalovyan (1997), Lexhnitsky (1981)): 
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and under the conditions of full contact between the layers, which for k  layer are written in the form 
of 
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where ij  are the stresses tensor components, zyx uuu ,,  are the displacement vector components, ih  

are the thicknesses of the layers, ija  are the constants of elasticity, ij  are the coefficients of the 
temperature extension, time t enters the conditions Eqn. 2.2 as parameter characterizing the stresses 
and displacements values for beforehand given time ntt  , i.e. the moment of time, when the 
dimensions of seismic stations and GPS systems were conducted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1. Packet from N orthotropic layers 
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The conditions on the lateral surface of the packet are not defined concretely, as later it will be shown, 
that the solution of boundary layer type corresponds to them, i.e. such solution, which decreases 
quickly (exponentially) when removing from the lateral surface into the inside the packet. In practical 
applications the boundary layer is usually neglected. 
 
 
3.  THE ASYMPTOTIC SOLUTION OF THE PROBLEM 
 
In order to solve the set up boundary-value problem, in the equations and correlations Eqn. 2.1 we 
pass to dimensionless variables and displacements 
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as a result a singularly perturbed system relative to small parameter is obtained. The solution of such 
systems Eqn. 2.1 is combined of the solutions of the inner problem ( intI ) and the boundary layer ( bI ) 
(Aghalovyan (1997), Naife. (1976)). The solution of the inner problem is sought in the form of 
(Aghalovyan (1997), Aghalovyan (2008)) 
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here and later the notation Ms ,0  means summing by the repeating index s by integеr values from 
zero to the number of approximations M. 
 
Substituting Eqn. 3.2 into the transformed according Eqn. 3.1 system Eqn. 2.1 and equalizing in each 
equation the coefficients under the same degrees  , for determination ),(),(),(),( ,v,, sksksksk

ij wu  we 
get the system 
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System Eqn. 3.3 permits integration by  , a result we have 
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In general case the solution Eqn. 3.4, Eqn. 3.5 contains 6N unknown functions ,, ),(
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Eqn. 2.2 and 6(N-1) conditions of the contact Eqn. 2.3. We consider, that the process of accumulation 
of critical deformations is quasistatic, that is why the equations of equilibrium have been used Eqn.2.1. 
The method permits us to consider dynamic problems as well. We describe the procedure of 
satisfaction of conditions Eqn. 2.2, Eqn. 2.3. At first the values of the first layer are determined by 
means of the satisfaction of the conditions Eqn. 2.2 (Aghalovyan (2011)). Using the formulae Eqn.3.2, 
Eqn. 3.4, Eqn.3.5 and satisfying the conditions Eqn. 2.2, we have 
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Having the solution Eqn. 3.6, by the corresponding formulae Eqn. 3.4, Eqn. 3.5 the stresses 
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the satisfaction of the conditions Eqn. 2.2. Having the values of the stresses and displacements of the 
first layer, by means of satisfaction of the contact conditions Eqn. 2.3 between the first and second 
layers, all the desired values of the second layer are determined. Then using the contact conditions 
Eqn. 2.3 between the second and third layers, the stresses and displacements of the third layer are 
determined and later in the same way the values of the rest of the layers are determined. In general 
case the satisfaction of the conditions Eqn. 2.3 for an arbitrary k layer brings to the solution of the 
following recurrent equations 
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from where and from the formulae Eqn. 3.4 follows 
 

),;,;v,(),,(),,(),,(

),()(),,(
),,(),,(

),(),(

),,(),,(

),,(),(),(

),,(),,(),(),(

4455
),1(

*
),1(

*
),(

*

),(
0

),(
0

)(
55

),1(
0

)1(
55

),1(

),1(
*

),1(
0

)1(
55

),(
*

),(
0

),(
0

)(
55

),1(
0

),1(
*

),1(
*

),(
*

),(
0

),1(

),1(
*

),(
*

),(
0

),1(
0

aayxuuuu

uaau
uau

uau

k
sksk

k
sk

sksk
xzk

ksk
xzk

ksk
k

sksk
xzk

k
k

sk

sksk
xzk

ksk

sk
jzk

sk
jz

k
sk

jz
sk

jz
sk

jz

k
sk

jzk
sk

jz
sk

jz
sk

jz











































 (3.8) 

)1,...,2,1(),,,(),,(),,(

),()(),,(

),,(

),,(),(),(

),1(
*

),1(
*

),(
*

),(
0

),(
0)(

11

)(
33),1(

0)1(
11

)1(
33),1(

),1(
*

),1(
0)1(

11

)1(
33

),(
*

),(
0

),(
0)(

11

)(
33),1(

0
























Nkwww

w
A
A

A
Aw

w
A
A

ww
A
Aw

k
sksk

k
sk

sksk
zzkk

k
sk

zzkk

k
sk

k
sksk

zzkk

k

k
sksksk

zzkk

k
sk









 

 



For the first layer we have the solution Eqn. 3.6, then from Eqn. 3.8 at 1k   the solution for the 
second layer will be determined, at 2k  the solution of the third layer is determined, etc.. 
 
Thus, the conditions Eqn. 2.2, Eqn. 2.3 turned out to be sufficient for determination of all the desired 
values of all the layers. From here it follows, that the solution of the boundary layer ( bI ) will be 
determined independently and will remove in coordination when satisfying the boundary conditions on 
the lateral surface. As it is denoted above, in practical applications as a rule, the boundary layer is 
neglected. 
 

 
4. ON MATHEMATICALLY EXACT SOLUTIONS 
 
If the functions 

ju  entering the boundary conditions Eqn. 2.2 are polynomials from ),(,, yx , the 

iterated process of determination ,, ),(),( sksk
ij u  ),(),( ,v sksk w cuts off on certain approximation, 

depending on the degree of the polynomial. As a result we obtain a mathematically exact solution in 
the inner problem. For the illustration of what has been said above the solution of the boundary 
problem Eqn. 2.1 – Eqn. 2.3 at 0,0 )()(  k

j
k F  will be brought, and 
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Using the formulae Eqn. 3.6 – Eqn. 3.8, it is easy to be convinced, that the approximations 1,0s  
will be different from zero. Calculating these approximations for three-layered packet, according to the 
formulae Eqn. 3.1, Eqn. 3.2, the following exact solution will be obtained: 
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On the base of the obvious regularities in formulae Eqn. 4.2, Eqn. 4.3, it is not difficult to write out the 
exact solution of the inner problem for N-layered packet. For the packet of the finite tangential 
dimensions, close to the lateral surface to this solution the solution of the boundary layer should be 
added. The above brought property of the solution may have an important applied significance. Really, 
let for the moment of time ntt   the data of seismic stations and GPS systems  

),,,(),,,( niiyniix tutu    ),,( niiz tu   known in m points of the facial surface of N-layered 
packet foundation-base. Then the displacements of the facial surface may be represented in the form of 
Lagrange polynomial 
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where   means product. 
 
Substituting Eqn.4.4 into the formulae Eqn. 3.1, Eqn. 3.2, Eqn. 3.4 – Eqn. 3.8, after the final number 
of iteration we determine mathematically exact solution of the problem, corresponding to the 
dimensions of seismic stations and GPS systems, i.e. the stress-strain state of the whole packet, 
corresponding to time ntt  . Modern computational tools may determine this solution in a few 
minutes. 
 
Conducting the monitoring of the solution by time and observing the change of the stress-strain state 
of responsible structures construction area in seismic dangerous zones, the full representation about 
the construction area state may be composed and the possibility of critical situations rise may be 
revealed. 
 
5. CONCLUSION 
 
Modern science mainly relates the emergence of strong earthquakes to Lithospheric plates tectonics of 
the Earth (≈95% of earthquakes). In this paper the problem of determining stress-strain states of 
Lithospheric plates based on equations and relations of the three-dimensional problem of elasticity 
theory and data of seismic stations and GPS systems is considered. The corresponding non-classical 
three-dimensional problem is solved by the asymptotic method. The data from GPS systems and 
seismic stations on the values of displacements of points of the face surface of a plate is approximated 
by Lagrange polynomial, and the corresponding mathematically exact solution of the internal problem 
is derived. 
 
Tracing the behavior of stress-strain state of Lithospheric plates over time (monitoring) provides an 
opportunity for establishing the place and time of critical stress-strain states leading to a global 



destruction. Together with the analysis of anomalous phenomena accompanying earthquake it opens a 
way for prediction strong earthquakes. 
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