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SUMMARY:  
A physical model composed of a tri-linear spring, a friction slider and a viscous damper is proposed for the 
simulation of the dynamic behaviour of hybrid base isolation systems (HBIS) composed of high damping rubber 
bearings (HDRB) and low friction sliding bearings (LFSB). After the introduction of the constitutive equations 
for each device composing the overall system, it is shown that the motion of the system consists of alternating 
linear phases. An analytical solution is provided in compact form for all possible phases of motion. The end 
conditions for one phase provide the initial conditions for the next one. The solution is applied to the dynamic 
identification of the HBIS of the Solarino buildings. A well established evolution strategy (CMA-ES) is used as 
the dynamic identification algorithm. The estimated values of the physical parameters, together with simulated 
test responses, contribute to a better understanding of the behaviour of HBIS. 
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1. INTRODUCTION 
 
Hybrid Base Isolation Systems (HBIS), composed of High Damping Rubber Bearings (HDRB) and 
Low Friction Sliding Bearings (LFSB), are considered. At the turn of the century such systems were 
used for the seismic retrofitting of two four-story reinforced concrete buildings in Eastern Sicily, 
(Oliveto et al., 2004(a)). In July 2004 one of the buildings was subjected to free vibration tests by 
releasing imposed initial displacements, (Oliveto et al., 2004(b)). 
 
In the following years most of the work by the senior author has been devoted to the identification of the 
base isolation system, using very simple models at first and moving gradually to more sophisticated 
ones. The work has been presented at conferences on earthquake engineering and published in reviewed 
journals. Identification in the frequency domain, (Oliveto et al., 2008), was followed by identification in 
the time domain (Oliveto et al., 2010). The latter involved a bi-linear model to describe the HDRB 
component of the system and a Constant Coulomb Friction Model (CCFM) for the LFSB component.  
 
The identification was based on the Least Squares Method (LSM), used to match the experimental 
acceleration response to the analytical solution based on the above models. The results obtained were 
good and the identified parameters compared well with those derived from laboratory tests performed on 
individual bearings. Nevertheless, the work continued with the aim of improving both the model and the 
identification procedure: on one side by providing improved subsystem models and on the other by 
searching for the most effective algorithm for the problem at hand. 
 
As far as the model is concerned, a Linear Coulomb Friction Model (LCFM) was introduced to exploit 
some characteristics of the experimental acceleration signal. The results of this study were presented at 
CUEE-2011 and were based again on an analytical solution. Apart from yielding improved 
identification results, this work also provided a simple way of evaluating the relative dissipation 



capacity of the two system components, (Athanasiou and Oliveto, 2011).  
 
From a computational point of view an interdisciplinary approach was used. A whole family of 
evolutionary algorithms (Evolution Strategies) were tested on the identification problem at hand and the 
most suitable one was identified, (Athanasiou et al., 2011 and 2012). 
 
Object of the present paper is to summarize the previous work and to present the latest results based on 
newly developed models and a state-of-the-art identification algorithm. The new models include a tri-
linear spring for the description of the behaviour of the HDRB component and a LCFM for the 
description of the behaviour of the LFSB component. The response is once more based on an analytical 
solution. The Covariance Matrix Adaptation-Evolution Strategy (CMA-ES), (Hansen, 2006), is used 
for the identification of the considered base isolation system. The results are compared to those obtained 
by use of the previous models and the characteristics of each model are analysed and discussed. 
 
 
2. BASIC PRINCIPLE OF SEISMIC ISOLATION  
 
Seismic isolation is based on the idea of decoupling the motion of the structure from the motion of the 
ground. Ideally a structure would be perfectly isolated from the horizontal seismic action if it could 
remain still while the ground slid freely underneath. Apart from the technological difficulty of 
implementing such idea, some practical points are also against the use of this ideal solution. Under 
horizontal forces, such as those due to wind, the structure would move without bounds and even under 
earthquakes there would be the danger of it colliding against obstacles fixed to the ground. To avoid 
these inconveniences the structure should have sufficient horizontal stiffness to sustain the horizontal 
forces and to limit the horizontal displacement relative to the ground to an acceptable level. This task 
can be achieved by using special bearings with low horizontal stiffness. A state-of-the-art of the general 
hardware used for seismic isolation can be found in a recent MCEER report, (Constantinou et al., 
2007). Several recent constructions using seismic isolation in Japan are shown in a special issue of the 
Journal of Disaster Research, (Kasai, 2009), while several topics concerning seismic isolation and 
seismic isolation devices are addressed in a special issue of Earthquake Engineering and Structural 
Dynamics, (Wada and Constantinou, 2010). 
 
A HBIS composed of 12 HDRB and 13 LFSB was designed and used for the Solarino buildings 
(Oliveto et al., 2004(a) and (b)). To avoid instability problems, the horizontal stiffness of each HDRB 
cannot be below certain limits and for this reason only 12 of the 25 bearings in the Solarino buildings 
are HDRB while the remaining 13 are LFSB. The latter are not exposed to instability problems and do 
not exhibit horizontal stiffness while sliding.  
 
 
3. THE PHYSICAL MODEL 
 

 
 

Figure 3.1. Single degree of freedom system 



The physical model is the same as the one considered in (Oliveto et al., 2010). As shown in Fig. 3.1, it 
is composed of a mass m restrained by a non-linear spring, a viscous damper and a friction slider acting 
in parallel. The mass represents the part of the structure above the isolation interface assumed as rigid. 
This assumption is reasonable for low rise buildings, especially when the focus is on the isolation 
system, and is widely justified in the literature, (Oliveto et al., 2010) and referred literature. The non-
linear spring is used to model the behaviour of the HDRB component of the isolation system while the 
friction slider describes the response of the LFSB. The viscous damper is meant to account for any 
source of energy dissipation in addition to the other two devices. For instance it could account for the 
energy dissipated in the superstructure.  
 
 
4. MATHEMATICAL MODELS 
 
Based on its purpose, a linear model is adopted for the viscous damper. This model has been used in all 
previous studies and is maintained in the present one. As far as the non-linear spring is concerned a bi-
linear model was used in (Oliveto et al., 2010) and in (Athanasiou and Oliveto, 2011). In an attempt to 
improve previous identification results, herein the bi-linear spring is replaced by a tri-linear one, Fig. 
4.1(a). It may be interesting to notice that the bi-linear model is a particular case of the tri-linear one 
when the yielding branches 2 and 3 have the same slope, i.e. k1=k2. 
 
The friction slider was modelled by a CCFM in (Oliveto et al., 2010) and by a LCFM, with the 
amplitude of the friction force increasing with the amplitude of the displacement, in (Athanasiou and 
Oliveto, 2011). The use of the latter was motivated by the observation that when the velocity changes 
sign the acceleration records show larger jumps at higher amplitudes of the displacement. In the present 
work we are allowing for the friction force to diminish with the amplitude of the displacement, 
considering that the change of sign of the velocity occurs when the amplitude of the displacement is a 
maximum, but then the velocity is nearly zero and the friction force at a minimum. The proposed model 
is shown Fig. 4.1(b). It may be worth noticing that by setting kF=0 in this model the CCFM used in 
(Oliveto et al., 2010) is regained, while by changing the sign to kF the LCFM used in (Athanasiou and 
Oliveto, 2011) is found.  
 

 
 

Figure 4.1. (a) Tri-linear model and (b) Linear Coulomb friction model 
 
 
5. EQUATION OF MOTION 
 
The equation of motion for the free vibration of the system shown in Fig. 3.1 can be written as follows: 
 

 , ( , ) 0S Fmu cu F u u F u u        (5.1) 



where  ,SF u u is the force in the tri-linear spring and ( , )FF u u is the force in the friction slider. 
 
5.1. Constitutive equations for the tri-linear model 
 
The force in the tri-linear spring is graphically shown in Fig. 4.1(a) while the force in the friction slider 
is shown in Fig. 4.1(b). From observation of Fig. 4.1(a) it may be recognized that there are seven 
distinct phases of motion, e.g. six plastic phases and one elastic phase. The six plastic phases can be 
reduced to just three considering that the plastic behaviour is symmetric. The force-displacement 
relationship for the elastic phases can be given by the following expression: 
 

 0 0 ( )S
I IF u F k u u    (5.2) 

 
where (FI, uI) is the starting point of the elastic phase and k0 its slope or the elastic stiffness of the 
spring. The three, in fact six, plastic phases are governed by the following equations: 
 

 , ( ) ( ( )); ( 1,2,3)S
J J J JF u u F sign u h u u sign u J       (5.3) 

 
where (FJ, uJ) are characteristic points of the upper plastic phases. As it may be seen from Fig. 4.1(a), 
u2=0, h1=h3=k2 and h2=k1. The total number of parameters appearing in Eqn. 5.3 is equal to seven. An 
additional parameter, i.e. k0, is required for the definition of the elastic phases. However the following 
relationships hold among some of the parameters:   
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Therefore five parameters are required to define the tri-linear model, namely F2, u3, k0, k1, k2. The bi-
linear model can be obtained by setting k2=k1 and realising that u3 is no longer needed. In this case the 
number of required parameters reduces to three, i.e. F2, k0, k1. 
 
5.2. Constitutive behaviour of the friction slider 
 
The constitutive behaviour of the friction slider is described by the equation:  
 

     0,F F FF u u F k u sign u    (5.5) 
 
At times when the system stops the friction force must satisfy the following inequality: 
 

  0,0F R F F RF u F k u   (5.6) 
 
where uR is the residual displacement. 
 
 
6. ANALYTICAL SOLUTION 
 
From the expressions of the restoring force in the tri-linear spring and of the friction force in the slider it 
follows that each phase of motion, either elastic or plastic, is governed by linear equations. Therefore, 
an analytical solution can be derived by standard methods for each phase of motion. Initial conditions in 
terms of displacement and velocity can be used to connect the solution of one phase of motion to that of 
the following one. As follows, the solutions to each of the four possible phases of motion will be 



provided. 
 
6.1. Elastic phases  
 
The equation of motion for any elastic phase can be written as follows: 
 

2 2
0 0 0 02 Pu u u u         (6.1) 

 
where the symbols have the following expressions: 
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The solution to Eqn. 6.1 takes the simple form: 
 

    0 0 0 0( ) exp cos ( )P a I D Iu t u u t t t t          (6.4) 

 where:  
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 In the expressions above Iu and Iu are the initial conditions for the considered elastic phase. It should be 
noticed that when the elastic phase starts from the end of a plastic one it is Iu =0, from which it follows 
that θ1=θ0. Velocity and acceleration take similar expressions: 
 

    0 0 0 0 1( ) exp sin ( )a I D Iu t u t t t t              (6.7) 

    0 0 0 0 1( ) exp cos ( ) 2a I D Iu t u t t t t              (6.8) 
 
where: 
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6.2. Plastic phases  
 
The equation of motion for any of the plastic phases takes the following expression: 
 

2 22 p
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where: 
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The solution to the equation of motion is given below in terms of displacement, velocity and 
acceleration: 
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where: 
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7. NUMERICAL APPLICATION 
 
The following numerical application is meant to demonstrate the derived analytical solution. The 
simulation of Test 5 on the Solarino building is performed using as model parameters the best identified 
ones. The only purpose of this section is to illustrate the solution, while the identification problem is 
dealt within a following section. The solution is provided in terms of displacement, velocity and 
acceleration, as well as in terms of the force-displacement relationship for the HDRB and LFSB 
components of the HIBS isolation system. The results are shown in Fig. 7.1. In Fig. 7.1(a) the simulated 
acceleration is compared to the experimental record, while in Fig. 7.1(b) the simulated acceleration 
graph is partitioned according to the successive elastic and plastic phases of motion. The continuous 
branches are separated by acceleration jumps due to changes of sign in the friction force. Altogether 
there are three cycles of motion before the system comes to rest, each one composed of two branches. In 
the first branch, the elastic phase is followed by plastic phases 1 and 2. The second, third and fourth 
branch show elastic phases alternating only with plastic phase 2. The last cycle is formed by two fully 
elastic branches. Fig. 7.1(c) and Fig. 7.1(d) show the time-displacement and the time-velocity graphs 
respectively. A residual displacement of 3 mm in the displacement graph and a maximum velocity of the 
order of 26 cm/s in the velocity graph should be noticed. The six branches of elastic behaviour can be 
clearly seen also in Fig. 7.1(e), where the force-displacement graph for the HDRB component of the 
isolation system is shown. It should be noticed that the identification of the experimental data has 
provided the following inequalities between the slopes of the force-displacement relationship: k0>k1>k2. 
This property will be discussed, along with others, in the identification section of the paper. Finally, Fig. 
7.1(f) shows the force-displacement relationship for the LFSB component. It may be worth noticing that 
the identification procedure provided a friction force-displacement relationship where the friction force 
increases, albeit slightly, with the displacement amplitude. 

 



  

  

 
 

Figure 7.1. (a) Identified and recorded acceleration, (b) acceleration-time, (c) displacement-time, 
(d) velocity-time, (e) restoring force-displacement, (f) friction force-displacement 

 
 
8. THE IDENTIFICATION PROBLEM 
 
The Solarino free vibration tests were performed with the goal of identifying the system parameters 
from the recorded acceleration response. A displacement of the order of magnitude of the design one 
was initially imposed to the building and the corresponding force suddenly released. The testing 
apparatus and the data acquisition system used in the tests are described in (Oliveto et al., 2004(b)). 
Identification procedures in the frequency domain, using equivalent viscous models, proved to be 
unsuitable since they were unable to predict the clear shortening of the period with the decay of 
amplitude. The constant period of the viscous equivalent model was in stark contrast with the 
experimental data, (Oliveto et al., 2008). For this reason, a more sophisticated model was introduced for 



identification in the time domain, including a bi-linear spring to model the HDRB, a Coulomb friction 
slider to model the LFSB and a viscous damper to account for damping in the superstructure. An 
analytical solution for such a model was derived in (Oliveto et al., 2010) and applied to the system 
identification in the time domain using an iterative least squares procedure. The results were good, but 
the identification procedure was interactive, required considerable expertise and was time consuming. 
The authors concluded that there was still ample space for improvement, both in terms of modelling and 
identification procedure. The improvement of the identification procedure involved the establishment of 
bounds for the system parameters and the use of the CMA-ES algorithm. These two expedients made 
the identification procedure completely automatic and much faster. The CMA-ES was the most 
successful evolution strategy among the ones applied to the present problem, as documented in the 
interdisciplinary literature, (Athanasiou et al., 2011 and 2012). As far as modelling is concerned 
enhancements were originally achieved by introducing a two parameter model for the friction slider 
(LCFM), (Athanasiou and Oliveto, 2011). This course of action was motivated by the experimental 
observation that the friction force appears to be larger when the amplitude of motion is higher. In the 
present work the sign of the slope of the LCFM has been left free, so that the identification procedure 
can select positive or negative values according to what is required by the optimization process. The 
most noticeable improvement of the present work has been the introduction of the tri-linear spring to 
model the HDRB. The analytical solution provided in section 6 has allowed for a simple calculation of 
the error of the trial solution, i.e. the distance between the trial solution and the experimental one. The 
same approach proposed in (Oliveto et al., 2010) has been used for the evaluation of the error, or 
“solution fitness” in evolutionary computation jargon. Before moving to illustrate the results, it may be 
worth noticing that the CMA-ES algorithm is readily available, well documented and still subject of 
active research aiming at establishing its full potential and limits, (Hansen et al., 2011). 
 
8.1. Identification results  
 
The best results obtained by the identification procedure, using the most advanced model described in 
the previous section, are shown in Table 8.1. The identified system parameters are listed in the first 
column. Each quantity considered corresponds to a model parameter introduced in previous sections. In 
the first row is the “nominal” imposed displacement for each of the five dynamic tests considered. In the 
second row is the identified initial displacement u0; in the third is the first yield displacement uy, related 
to the force F2 and to the stiffness coefficients k0 and k1 by the relationship uy=F2/(k0-k1), see Fig. 4.1(a). 
In the fourth row is the friction displacement defined as uF0=FF0/k0, see Fig. 4.1(a) and (b), while in the 
fifth and sixth rows are the stiffness ratio rF0, defined by Eqn. 6.3, and the damping ratio ζ0, defined by 
Eqn. 6.2. In rows seven, eight and nine are three frequency parameters f0, f1 and f2, specified in cycles 
per second, corresponding to the circular frequencies defined by Eqn. 6.2 and 6.11. These are the 
characteristic frequencies of the system determining the change of period with amplitude. In the tenth 
row is the second yield displacement u3, Fig. 4.1(a), while in the eleventh row a measure of the 
identification error is given, see (Oliveto et al., 2010) for the definition. The last two columns provide 
for each system parameter the average value obtained from the five tests considered and the coefficient 
of variation. It is easy to recognize that the most stable parameters, i.e. those with the smallest variation 
from test to test, are the characteristic frequencies f0 and f1, followed by the friction displacement uF0, 

the characteristic frequency f2, the two yield displacements uy and u3, and the damping ratio ζ0. The 
most uncertain parameter appears to be the slope of the friction force – displacement graph. Of the five 
tests considered only one shows an increasing friction force with the displacement amplitude, Fig. 
7.1(f), while all the others show a behavior consistent with Fig. 4.1(b). A consistent comparison with 
results from previous models may be found in (Athanasiou et. al., 2011 and 2012). 
 
8.2. Identified physical parameters 
 
Using the identified mathematical parameters, the significant physical quantities of the system have been 
evaluated using the method outlined in (Oliveto et al., 2010). The results are shown in Table 8.2. The 
main aspect that emerges from the use of the new model is an increase of the stiffness coefficients k0 and 



k1 with respect to those obtained with the bi-linear model, (Oliveto et al., 2010), and a corresponding 
decrease of the first yield displacement uy. 
 
Table 8.1. Results from the identified five dynamic tests of  Solarino. 

Test 3 5 6 7 8 Mean c.o.v. (%) 

0u  n. (m) 0.11480 0.13290 0.13080 0.09670 0.10750 - - 
0u  (m) 0.10753 0.11660 0.11391 0.08500 0.08999 - - 
yu (m) 0.00898 0.01167 0.01069 0.00848 0.00732 0.00943 17 
0Fu (m) 0.00179 0.00234 0.00217 0.00218 0.00245 0.00219 10 

0Fr  -0.00119 0.00235 -0.00706 -0.01466 -0.02912 -0.00994 -113 
0  0.02962 0.02256 0.02149 0.03583 0.04461 0.03082 28 

0f (Hz) 0.56318 0.53979 0.56118 0.55743 0.55218 0.55475 2 
1f (Hz) 0.43089 0.41723 0.42171 0.44264 0.44805 0.43210 3 
2f (Hz) 0.26401 0.37477 0.30483 0.32331 0.29516 0.31242 12 

3u (m) 0.06951 0.08252 0.07611 0.05358 0.05696 0.06773 16 
2e  0.00489 0.00431  0.00538 0.00655 0.00305 - - 

 
Table 8.2. Physical quantities from the identified five dynamic tests of  Solarino. 

Test m (tn) 0k (kN/m) 1k (kN/m) 2k (kN/m) Fk (kN/m) c (kNs/m) 0
nF  (kN)  0F (kN) a

fSF  (kN) 

3 1438 18004 10539 3957 -21 301 1050 1027 77 
5 1333 15332 9160 7390 36 204 1180 1140 60 
6 1535 19089 10780 5632 -135 233 1222 1177 55 
7 1319 16183 10204 5444 -237 331 868 828 60 
8 1457 17537 11546 5011 -511 451 967 927 60 

Mean 1416 17229 10446 5487 -174 304 - - - 
c.o.v. (%) 6 8 7 20 -111 28 - - - 
 
Contrary to expectations, the third stiffness coefficient k2 is always smaller than both k0 and k1, giving 
the impression that the force-displacement relationship for the HDRB exhibits a gradually decreasing 
slope as the displacement amplitude increases. This softening effect may be due to the combined action 
of vertical load and large horizontal displacements. The damping ratio ζ0, which is probably related to 
damping in the superstructure, is on average equal to 0.03, with a minimum value slightly above 0.02 
and a maximum value of about 0.045. The evaluated system mass is on average about 18% larger than 
in previous calculations. As explained in (Oliveto et al., 2010), the evaluation has been performed using 
the formula given below and slightly modified to account for the tri-linear model introduced herein: 
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02 2 2 0

0 1 3 2 0 3

;
( ) ( )
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m F F F F
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   

   
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The change consists of reassessing the released force to account for the force entrapped in the system 
due to residual displacements (forces in the HDRB balancing those in the LFSB). The new values of the 
released force are given in the column under Fn

0 in Table 8.2. The correction term is due to the 
difference between the friction force evaluated during the first static test FfS (not affected by residual 
displacements) and the apparent friction force Fa

fS measured in the static pushing phases before the 
dynamic release tests (affected by residual displacements), (Oliveto et al., 2004(b)). The value of the 
static friction force FfS used in the above calculations is 100 kN, corresponding to the lower value of the 
two considered in the quoted references. 
 
 



9. CONCLUSIONS 
 
A new model for the simulation of the free vibration response of HBIS, composed of HDRB and LFSB, 
has been presented. It has been shown that the non-linear behaviour of the model derives from 
alternating phases of different linear behaviours. This ensures the existence of an analytical solution, 
which has been derived for the case of release tests under imposed initial displacement. This solution 
has been used, in conjunction with a state-of-the-art algorithm based on evolution strategies, for the 
identification of the HBIS of the Solarino buildings. A better matching of the simulated and the 
experimental responses has been achieved than that obtained using previous models. Particularly 
relevant has been the discovery that the slope of the force-displacement relationship for the HDRB 
component of the HBIS is monotonically decreasing with the increase of the displacement amplitude, i.e. 
0<k2<k1<k0. However, it is always positive for the displacements considered in the tests. Viscous 
damping, accounting for energy dissipation in the superstructure, also contributes to an improvement of 
the identification results, as compared to those obtained when it is neglected. 
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