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SUMMARY:  
For earthquake-resistant design, engineering seismologists employ time-history analysis for nonlinear 
simulations. The nonstationary stochastic method previously developed by Pousse et al. (2006) has been 
updated. This method has the advantage of being both simple, fast and taking into account the basic concepts of 
seismology (Brune's source, realistic time envelope function, nonstationarity and ground-motion variability). 
Time-domain simulations are derived from the signal spectrogram and depend on few ground-motion 
parameters: Arias intensity, significant relative duration and central frequency. These indicators are obtained 
from empirical attenuation equations that relate them to the magnitude of the event, the source–receiver distance, 
and the site conditions. We improve the nonstationary stochastic method by using new functional forms  (new 
surface rock dataset, analysis of both intra-event and inter-event residuals, consideration of the scaling relations 
and VS30), by assessing the central frequency with S-transform and by better considering the stress drop 
variability.  

 
Keywords: Nonstationary stochastic simulations – time-histories – Accelerometric Japanese dataset – GMPEs  
 
 
1. INTRODUCTION 
 
For earthquake-resistant design, engineering seismologists employ time-history analysis for nonlinear 
simulations. Within worldwide accelerometric databases, few natural records are available in the 
magnitude-distance range of engineering interest for low seismicity region (near-field and moderate 
magnitude scenarios). Consequently, it is necessary to develop simulation methods to generate 
synthetic accelerograms. Among the available techniques for generating time histories (Douglas and 
Aochi, 2008), we focus on methods based on stochastic simulations. These techniques have the 
advantage of using few input parameters (they do not require detailed knowledge about the rupture) 
and not being site specific but rather global. The recent development of a large strong-motion database 
is also a key motivation for the development of this type of method as the data availability helps to 
calibrate the input parameters (e.g. Pousse et al. 2006; Rezaeian and Der Kiureghian, 2010). We chose 
to update the nonstationary stochastic method initially developed by Sabetta and Pugliese (1996) and 
then by Pousse et al. (2006). This method has the advantage of being simple, fast and taking into 
account the basic concepts of seismology (Brune's source, realistic time envelope function, 
nonstationarity and ground-motion variability). The synthetic generation depends on only three input 
parameters: moment magnitude, source-site distance and site conditions; and on only three ground-
motion parameters: Arias intensity (AI), significant relative duration (DSR) and the evolution of the 
central frequency over time (FC(t)). However, the functional forms used by Pousse et al. (2006) are too 
simple. In this view, a Japanese database including only surface rock recordings is built. Secondly, 
ground-motion prediction equations are derived from this rock-motion database for the 5 % damped 
acceleration response spectra (SA(f)), peak ground acceleration(PGA), AI, DSR and FC(t). Finally the 
semi-empirical nonstationary stochastic method is improved by considering the new functional forms 
and also by better taking into account the stress drop variability.  
 
 
 



2. JAPANESE DATASET 
 
After the destructive 1995 Kobe earthquake, Japanese scientists installed dense and uniform networks 
that cover the whole of Japan: the Hi-net (high-sensitivity), F-net (broadband), KiK-net and K-NET 
(strong-motion) networks (Okada et al. 2004).  Each instrument is a three-component seismograph 
with a 24-bit analog-to-digital converter: the KiK-net and K-NET networks use 200-Hz and 100-Hz 
sampling frequencies. Japan is in a highly seismic area where a lot of quality digital data are recorded 
and made available to the scientific community (http://www.kyoshin.bosai.go.jp/indexen.html). In the 
present study, the KiK-net and K-NET strong-motion records are collected up to the end of 2009. To 
have consistent metaparameters, we only used events characterized in the F-net catalog. Thus, the 
values of MW, the hypocenter location (latitude, longitude and depth), and the rake angle used for focal 
mechanism characterization, were determined by F-net. We fix 4.5 MW as the lower magnitude limit 
of our selection, and to select stations located on rock sites, we keep in the analysis only the stations 
with VS30 greater than 500 m/s.  In the case of the KiK-net network,with the sites characterized by 
velocity profiles ranging from 30 m to 2008 m, VS30 can be computed. In the case of the K-NET 
network, the surveys are made down 20 m in depth. Using the KiK-net velocity models, Boore et al. 
(2011) provided equations that related VS30 to VSZ for Z ranging from 5 m to 29 m in 1 m increments. 
VS30 is estimated from these equations for the K-NET network. To include only crustal events, shallow 
events with a focal depth ≤ 25 km were selected. Offshore events were excluded but we chose to add 
the events with MW ≥ 5.5 in the sea west of the eastern border of Japan. A magnitude-distance filter 
was applied according to the Kanno et al. (2006) ground-motion prediction equation, which allows the 
data observed at large distances to be eliminated. We chose 2.5 gal as a PGA threshold. Following a 
visual inspection, faulty recordings like S-wave triggers, or recordings from multi-events are 
eliminated or shortened. At the same time, we collected all of the available fault-plane models for 
earthquakes with MW≥5.7, as listed in Table 2.1. The source distance is the closest distance from a 
fault plane to the observation site, and it is the hypocentral distance in the case of earthquakes for 
which the fault model is not available. Our dataset finally consists of 2357 recordings, 405 observation 
sites (240 KiK-net and 165 K-NET) and 132 earthquake epicenters. The magnitude-distance 
distribution is shown in Fig. 2.1.  
 
Table 2.1. Events for which the source geometry is taken into account to define the source-receiver distance 
(RRUP). The Kagoshima 2 event has been described as two fault planes. In this case, the source-receiver distances 
are calculated for these two planes, and the shortest distance is selected. 

Name Date Mw Strike Dip Length Width Reference 
Kagoshima 1 199703261731 6.10 280 90 15 10 Horikawa (2001) 
Kagoshima 2 199705131438 6.00 (280, 190) (90, 90) (9, 8) (10, 10) Horikawa (2001) 
Yamaguchi 199706251850 5.90 235 86 16 12 Ide (1999) 

Iwate 199809031658 5.69 216 41 10 10 Nakahara et al. (2002) 
Tottori 200010061330 6.62 145 90 28 17.6 Ikeda et al. (2002)  

Miyagi-Ken 200307260713 6.10 (220, 186) (45, 52) (6, 12) (10, 10) Miura et al. (2004)  
200410231756 6.60 216 53 24 16 
200410231803 5.90 20 34 8 8 
200410231812 5.70 20 58 8 8.3 
200410231834 6.30 216 55 20 12 

Chuetsu 

200410271040 5.80 39 29 8 8 

Hikima and Koketsu (2005)  

Rumoi 200412141456 5.73 15 25 10 10 Maeada and Sasatani (2009)  
Fukuoka 200503201053 6.60 123 87.7 32 28 Kobayashi et al. (2006)  

Noto-Hanto 200703250942 6.70 58 66 30 18 Momiyama et al., 2009 
Chuetsu-Oki 200707161013 6.70 34 36 32 24 Miyake et al. (2010)  
Iwate-Miyagi 200806140843 6.90 203 37 42 18 Yokota et al. (2009)  

 
 
3. GROUND-MOTION PREDICTION EQUATIONS 
 
Characterizing the ground-motion properties is an important issue for engineering seismology. In the 
present study, we derive models for the several key ground-motion parameters (PGA, SA(f), AI, DSR, 
and FC(t)). 



 
 

Figure 2.1. Distribution of moment magnitude (MW) and rupture distance (RRUP) of the selected records, 
differentiated by networks (ο: KiK-net and Δ: K-NET networks). 

 
3.1. Characterization of the ground-motion parameters 
 
The Arias Intensity (AI) is a measure of the signal energy, as defined by Arias (1970). The definition 
of DSR is the time interval between 5% and 95% of the cumulative AI over time (Husid, 1969). The 
central frequency FC(t) quantifies the nonstationarity of the signal. It is related to the spectral moments 
of the Power Spectrum Density (Lai, 1982). The signal-to-noise ratio (SNR) is computed by using a 1-
s window of noise. Therefore, only the records with at least 1 s of noise are used. FC(τ) is computed 
for frequencies with SNR of more than 3, between the time arrival of the P wave and the time for 
which the AI reaches 95% by using S-transform (Stockwell et al., 1996). S-transform gives better 
resolution than the spectrogram used by Pousse et al. (2006), and especially for short-term recordings. 
The P waves are at higher frequencies than the S waves and most of the records tend to shift to lower 
frequencies as time increases. So statistically, FC(τ) can be modelled as follows: 
 

€ 

FC (τ ) = exp(A−B× ln(τ +1))  (3.1) 
 
For each record, the A and B coefficients are assessed by a simple linear regression. However, the B 
coefficient is negative in some cases; this means that FC(τ) increases globally. In this case, the A and B 
coefficients are computed both between the time of arrival of the P wave and the maximum of the S-
transform, and between it and DSR(95%). Finally, we take the values of the A and B coefficients from 
the S-wave part, or then the P-wave part if B is positive. 
 
3.2. Functional forms 
 
The ground-motion prediction equations are established for the two horizontal components. We 
consider different definitions (geometric mean and, arithmetic mean or independent components) for 
each parameter both to have a common definition for the ground-motion, and also to be consistent 
with previously published analyses. The ground-motion parameters are modelled as functions of the 
moment magnitude MW, the closest distance from a fault plane to the observation site RRUP and a site 
parameter defined according to VS30. In the present study, the aim was not to develop new functional 
forms. We then tested pre-existing functional forms, and we finally selected the functional forms that 
maximize the likelihood. The coefficients are derived from the random effects method (Abrahamson 
and Youngs, 1992), as well as from the within-event (ϕ) and between-event (τ) standard deviations of 
respectively δWij and δBi residuals (the subscripts i and j refer to event and station). 
 
Peak ground acceleration and 5% damped acceleration response spectra:  Many studies have been 
conducted on these indicators. We chose to work with the following functional form (Boore and 
Atkinson, 2008; Rodriguez et al., 2011): 
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Some of the GMPE parameters are interdependent. Therefore some of them were constrained starting 
from subsets of data of Rodriguez et al. (2011). Deriving GMPE coefficients from a database with 
only VS30 ≥ 500 m/s is not straightforward, as the number of records per event is more limited. So after 
trying to determine the coefficients Mh, h and b3 as reported by Rodriguez et al. (2011), we chose to 
use their coefficients because they allowed us to obtain a better distribution of residuals at different 
spectral periods.  
 
Arias Intensity: Few functional forms have been developed for AI (Travasarou et al., 2003; Stafford et 
al., 2009; Foulser-Pigott and Stafford, 2012; Lee et al. 2012). Under the assumption of Parseval 
theorem, AI has been related to the acceleration Fourier amplitude spectrum of Boore (2003). Thus, 
Travasarou et al. (2003) and Stafford et al. (2009) deduct functional forms based on theory. On the 
other hand, various studies have shown strong correlations between PGA and AI (we found a 
coefficient of correlation of 0.90). In the way of Foulser-Pigott and Stafford (2012), we chose to adjust 
a functional form similar to PGA. Note that the functional forms developed by Travasarou et al. 
(2003) and Stafford et al. (2009) were also tested although they were finally selected since the form 
giving the best standard deviations is the one adapted from the PGA. This functional form is defined 
as: 
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Significant relative duration: Two recent papers have been published on this topic: Kempton and 
Stewart (2006) and Bommer et al. (2009). These studies developed duration functional forms from 
basic seismological theory (Boore, 2003), which predict that the source duration is inversely related to 
the corner frequency. We chose to adapt the form developed by Bommer et al. (2009): 
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ln(DSR ij ) = a1 + a2 ⋅ (MWi
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The h coefficient controls the functional form at very short distances. However, the limited amount of 
rock data available in the near-field does not allow this coefficient to be calibrated. Therefore, we have 
chosen to use the h coefficient determined previously by Bommer et al. (2009) on the NGA data. 
 
Central frequency over time: Sabetta and Pugliese (1996), and then Pousse et al. (2006), developed 
simple functional forms for predicting the central frequency over time. Few studies have used this 
definition of central frequency for characterizing the frequency content in time. Indeed, engineering 
seismologists usually prefer to use the cumulative number of zero crossings over time (e.g. Rezaeian 
and Der Kiureghian, 2010). Pousse et al. (2006) showed that the A coefficient is mainly sensitive to 
site effects (A increases when VS30 increases) and to the distance (A decreases when RRUP increases). 
This study also suggests that the B coefficient is mainly sensitive to the distance (the slope increases 
when RRUP decreases) and also to the magnitude (the slope increases when MW increases). Finally, we 
chose to develop a simple functional form as: 
 



€ 

PARij = a1 + a2 ⋅ (MWi
−5.6) + b1 ⋅ ln(RRUPij

) +c1 ⋅ ln(VS30 ij /800) +δWij +δBij  (3.5) 

             with   PAR=  A, ln(B) 
 
3.3. Results 
 
The regression coefficients are presented in Tables 3.1 and 3.2. Figure 3.1 shows the inter-event and 
intra-event residuals according to MW, RRUP and VS30. For SA(f), AI and DSR, the residuals are well 
distributed. For SA(f) and AI, the sigma deducted are stronger than those of previous studies. Our 
results show a standard deviation of 0.845, while Boore and Atkinson (2008) found a σ of 0.566 on 
NGA data and Rodriguez et al. (2011) found a σ of 0.78 on Japanese data. It was already recognized 
that the ergodic variability of ground-motion is stronger for Japan (Rodriguez et al., 2011), because of 
larger site variability. In the case of AI, our σ is also larger than those of previous studies (see Lee et 
al. (2012) for a summary of standard deviations achieved). For DSR prediction, our functional form is 
similar to that of Bommer et al. (2009) and the sigma obtained is similar to this previous study. 
However, in detail, the inter-event and intra-event terms show significant differences. Bommer et al. 
(2009) found the values of intra-event and inter-event almost similar, while our inter-event term is 
lower and our intra-event term is stronger (this confirms that Japanese sites might be more 
heterogeneous than the European and Californian sites for a given VS30). 
 
Table 3.1. Regression coefficients for PGA and 5 % damped acceleration response spectra (geometrical mean of 
the two horizontal components, g). 
Per. (s) a1 a2 a3 a4 Mh b1 b2 b3 h c1 ϕ τ σ 

PGA -0.053447 0.51153 -0.13258 0.22396 5.6 -0.96551 0.2107 -0.014 1.36 -0.33707 0.65541 0.53346 0.84507 
0.0384 0.66897 0.58703 -0.20807 0.39223 5.6 -1.0025 0.16005 -0.014 1.2 -0.062352 0.67452 0.5656 0.88027 
0.0484 0.91612 0.64692 -0.22739 0.49764 5.6 -0.98952 0.13093 -0.014 1.2 -0.053157 0.69009 0.57479 0.89811 
0.0582 1.0402 0.86293 -0.15531 0.67188 5.6 -0.931 0.08792 -0.014 1.2 -0.063994 0.70965 0.57829 0.91543 
0.0769 1.174 1.1741 -0.040642 0.82768 5.6 -0.85675 0.049073 -0.014 1.2 -0.060246 0.75727 0.57423 0.95037 
0.0844 1.1251 1.1062 -0.077909 0.79292 5.6 -0.85304 0.05869 -0.014 1.2 -0.15693 0.76705 0.56967 0.95545 
0.097 1.049 1.1029 -0.097397 0.83191 5.6 -0.84279 0.060533 -0.014 1.2 -0.30829 0.76035 0.56389 0.94663 

0.1167 0.95244 1.1226 -0.033774 0.72045 5.6 -0.86795 0.090565 -0.0138 1.2 -0.45209 0.73082 0.54812 0.91353 
0.1472 0.9456 0.98923 -0.056821 0.55631 5.6 -0.957 0.1353 -0.0131 1.2 -0.63621 0.73475 0.53237 0.90735 
0.1691 0.83211 0.6902 -0.21985 0.3962 5.6 -1.0205 0.18065 -0.0126 1.2 -0.70706 0.72299 0.52852 0.89557 
0.2036 0.64394 0.4867 -0.29401 0.25966 5.6 -1.0727 0.21946 -0.0119 1.2 -0.76095 0.71194 0.52347 0.88367 
0.234 0.47552 0.55449 -0.30051 0.33502 5.6 -1.0613 0.20849 -0.0113 1.2 -0.79769 0.70218 0.50345 0.86402 
0.309 0.21697 0.40545 -0.32381 0.21518 5.6 -1.1407 0.25011 -0.01 1.2 -0.78078 0.67721 0.51352 0.84989 

0.3551 0.26779 0.54112 -0.12721 -0.05996 5.8 -1.1953 0.27496 -0.0092 1.2 -0.8036 0.67557 0.51987 0.85244 
0.3896 0.23289 0.37994 -0.17941 -0.17986 6 -1.2195 0.28412 -0.0087 1.2 -0.79823 0.67672 0.52827 0.8585 
0.4274 0.15474 0.39176 -0.15983 -0.23609 6 -1.2479 0.29566 -0.0082 1.2 -0.78573 0.67768 0.52833 0.85929 
0.469 0.16342 0.50356 -0.1262 -0.19146 6 -1.27 0.289 -0.0076 1.2 -0.75421 0.67615 0.53119 0.85985 

0.5913 0.004647 0.53229 -0.11926 -0.20505 6 -1.3329 0.3007 -0.0062 1.2 -0.69754 0.67022 0.54423 0.86336 
0.7456 -0.15406 0.72525 -0.03463 -0.21427 6 -1.3808 0.30522 -0.0049 1.2 -0.69847 0.65969 0.51299 0.83568 
0.818 -0.16584 0.75843 -0.025508 -0.23741 6 -1.4197 0.31173 -0.0043 1.2 -0.6784 0.65957 0.50082 0.82816 

0.9401 -0.28915 0.79785 -0.042921 -0.20283 6 -1.4363 0.30944 -0.0036 1.2 -0.65954 0.66032 0.47773 0.81501 
1.3622 -0.80171 0.71254 -0.048238 -0.13681 6 -1.5357 0.34884 -0.002 1.2 -0.66515 0.64908 0.41846 0.77228 

 
Table 3.2. Regression coefficients for the ground-motion parameters. Different horizontal definitions have been 
used: GM, geometrical mean; AM, arithmetic mean and IND, the two horizontal components are independent. 
Per. (s) H Def.  a1 a2 a3 b1 b2 h c1 ϕ τ σ 
AI (m/s)   AM   7.90495   3.8684  -0.15884    -3.04157    -0.24657    15.815    -0.71102   1.17046    0.98146   1.5275   
AI (m/s)   GM   7.92892   3.88485  -0.15950    -3.04614     -0.24972    16.131    -0.71189   1.16603   0.98209   1.5245    
SMD (s)   IND   0.36220   0.34394   X   0.63582   -0.038941   2.5   -0.10385   0.43360   0.19766    0.4765  
SMD (s)   GM  0.37827   0.33056   X   0.62982  -0.036646  2.5   -0.10080   0.42182   0.17488    0.4566   

A   GM    3.55833   -0.043563   X   -0.17115   X   X  0.13792   0.33288   0.088269   0.34439   
B   GM   -1.01196   0.14835   X   -0.24392   X   X -0.40941   0.97950  0.27920   1.01852   



         AI

 

             DSR

 
              A   

 

             B 

 
 

Figure 3.1. Inter-event residuals plotted with respect to MW and inter-event residuals as a function of RRUP and 
VS30 at various spectral periods. The dark dots represent the average for a bin of MW, RRUP or VS30. 

 
 
4. GENERATION OF TIME-HISTORIES WITH A NONSTATIONARY STOCHASTIC 
METHOD.  
 
4.1. The nonstationary stochastic model formulation 
 
Time domain simulations are derived from signal spectrogram PS(t,f) which depends on the prediction 
of ground-motion parameters such as AI, DSR and FC(t) of the signal. Sabetta and Pugliese (2006) 
assumed that PS(t,f) can be factorized as: 
 

€ 

PS(t, f ) = PSt ( f ) ⋅Pa(t)  (4.1) 
 
where PSt(f) represents the frequency content at each time t and Pa(t) the time envelope function. This 
factorization needs that PSt(f) and Pa(t) to follow a functional form based on the log-normal density of 
probability shape.  
 
Frequency content:  A benefit of this method is that its frequency content is realistic. It follows the ω-
square model (Frankel et al., 1996), which is multiplied by a high-cut filter. This filter can account for 
the diminution of the high frequency motions (Boore, 2003). The nonstationarity is given by replacing 
fmax with FC(t) in this filter. The seismic spectrum relative to the source can be defined as: 
 

  

€ 

Sτ ( f ) =

(2πf )2

1+ ( f / fc )
2

1+ f /FCτ[ ]
8

                                                                                                (4.2) 
 
where fc is the corner frequency defined as: 

€ 

log( fc ) =1.341+ log(β × Δσ1/ 3) −0.5MW  where Δσ is the 
stress drop in bars, MW is the moment magnitude and β is the shear wave velocity in kilometers per 
second (see Table 4.1). PSt(f) is assumed to follow the functional form of a probability density 
function, so its area must be 1 and its dimension should be that of a duration (s). Sτ(f) must be 
normalized by its area. Moreover, for each simulation, the stress drop and the central frequency are 
drawn randomly. The Pousse et al. (2006) method did not correctly take into account this stress drop 
dependency, and we have improved this part. The simulations are now calibrated to a stress drop 
reference of 10 bars (Fig. 4.1). 
 
Envelope time function: In the literature, different temporal envelopes are used (a gamma distribution 
a lognormal distribution). Only the time envelope of Pousse et al. (2006) includes the arrival of P, S, 
and coda waves; and the radiated energy is distributed over each specified duration. The only 
difference between our method and the former Pousse et al. (2006) studies concerns the evaluation of 
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the quality factor, Q=Q0fN (see Table 4.1). In Pousse et al. (2006), the frequency was chosen randomly 
between 1 Hz and 5 Hz, whatever the chosen scenario. Now, the frequency is the central frequency 
predicted for a given scenario.  
 
 

 
 

Figure 4.1. Simulated acceleration Fourier spectra for different values of stress drop. 
 
 
Variability: Another key advantage of this simulation method is to take into account the natural 
variability of ground motion. A Monte Carlo exploration of the key parameters is used to reproduce 
this variability (see Tab. 4.1). 
 

Table 4.1. Parameters used to simulate variability with the nonstationary stochastic method. 
Parameter Fitted distribution Distribution Bounds Reference 
Phase (φ) Uniform [-π ; π]  
Δσ (bars) Uniform Log([0;2]) Lay and Wallace (1995) 
β (km/s) Fixed 3.6  

Q0 Uniform [ 45 ; 140 ] 
N Uniform [ 0.5 ;  0.9 ] Oth et al. (2011) 

ln(AI) 
ln(DSR) 

A and ln(B) 
Normal µ and σ results from 

GMPEs  

 
Computation of the time history: The accelerogram calculation is based on the assumption that the 
ground-motion at time t results from the contribution of random and uncorrelated phases (Boore, 
2003). Synthetic accelerograms are then performed, by summing Fourier series with time-dependent 
coefficients derived from PS(t,f), as follows: 
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x(t) = Cn (t) cos(n2πdft
n=1

N

∑ +ϕ n )  (4.6) 

€ 

Cn (t) = 2PS(t, f )df  (4.7) 
 
where x(t) is the simulated accelerogram and the phases φ are random numbers uniformly distributed 
in the range -π to π. 
 
4.2. Results 
 
We compare the simulations obtained with real data. The chosen scenarios are all sampled by a 
significant number of records, i.e. a first scenario with MW = 5, RRUP = 50 km and VS30 = 550 m/s, and 
a second scenario with MW = 6.6, RRUP = 30 km and VS30 = 550 m/s. This method has the advantage 
that it can simulate many accelerograms in a few minutes. 2500 time histories were generated for the 
two scenarios by exploring the strong motion parameters between  ± 1 σ. Figure 4.2 shows a 
comparison between the predicted response spectrum and the simulated response spectra. Until about 
0.3 s, the distribution of the spectral amplifications is well reproduced by the simulations. However, at 
long periods, the simulated response spectra tend to overestimate the spectral amplitudes. Within these 
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simulations, a subset has been selected. The mean squared error (MSE) between the spectral 
accelerations of the simulations and the target spectrum (the mean response spectrum in this example), 
were computed. Figure 4.2 also shows the 30 time histories that have the best match with the target 
spectrum over the whole period range. Note that using this method, the selected time histories show a 
better fit at long periods. Figure 4.3 compares the distributions of the ground-motion parameters from 
the predicted model with the simulations. For these three indicators, the variability is well reproduced 
by the simulations. Figure 4.4 shows for comparison a sample of simulated and real time histories. The 
simulated time histories show different waveforms, various amplitudes, and durations like the real 
time histories.  
 
 

 
 

Figure 4.2. Comparison of simulated (gray lines) and predicted (purple line) acceleration response spectra 
corresponding to (left) MW=5, RRUP=50km and VS30=550m/s; and (right) MW=6.6, RRUP=30km and VS30=550m/s. 

In light gray lines, the 2500 simulations and in dark gray lines, the 30 best matched time-histories.  
 
 

 
 
Figure 4.3. Comparison between the predicted distributions of the ground-motion parameters (red lined) and the 
ground-motion parameters distributions of the 2500 simulations (histogram) for the two scenarios: (top) MW=5, 

RRUP=50km and VS30=550m/s; and (bottom) MW=6.6, RRUP=30km and VS30=550m/s. 
 
 

 
 

Figure 4.4. Comparison of simulated and recorded acceleration motions: (left) MW=5, RRUP=50 ± 1 km and 
VS30=550 ± 50 m/s; and (right) MW=6.6, RRUP=30 ± 5 km and VS30=550 ± 50 m/s. 
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5. CONCLUSIONS AND DISCUSSION 
 
A new and homogeneous active shallow crustal accelerometric database of rock ground motion was 
built (VS30 ≤ 500 m/s). This database consists of 4998 Japanese digital records.  
New, rock-specific, ground-motion prediction equations were derived using this new database for the 
characterization of the key parameters (PGA, SA(f), AI, DSR and FC(t)). These new GMPEs take into 
account recent developments (analysis of both intra-variability and inter-variability, updated 
functional forms, including the scaling relations and VS30). Our equations should be used only for 
predictor variables in these ranges: 4.5≤MW≤6.9, and 500≤VS30≤1500m/s. The intra-event is stronger 
than that derived in other regions, confirming that Japanese sites might be more heterogeneous than 
European and Californian sites. In addition, the site coefficient of these new rock specific GMPEs 
(PGA, AI and DSR) was found to be smaller than that predicted from previous studies mixing rock and 
soil records. This shows the importance of having developed a specific rock database. 
The nonstationary stochastic method is a simple method that includes the theoretical bases of 
seismology. This method allows the rapid generation of a large number of time histories. The new 
functional forms of the key ground-motion parameters and a new method to take into account the 
stress drop variability have been included. This method allows good reproducing of the ground motion 
and its variability at low periods, up to around 0.3 s. However, the response spectra are overestimated 
at long periods and so, the displacement is overestimated. This overestimation might have several 
origins:  
- As reported by Safak and Boore (1988) and Rezaeian and Der Kiureghian (2010), it is necessary to 
assure zero residual velocity and displacement of the motion, as well as realistic response spectral 
values at long periods. Without such filtering, stochastically generated ground motions tend to 
overestimate response spectral values in the long period range. A high-pass filter was applied by these 
authors. However, our nonstationary stochastic method still includes a filter above the corner 
frequency (the ω-square model) and the use of this high-pass filter leads to an underestimation of the 
low frequencies. 
 -As reported by Atkinson and Silva (2000), the Brune point-source model leads to an overestimation 
of the long periods for large magnitude events. They have shown that the use of a stochastic finite-
fault model or the use of a two-corner point-source model for the earthquake spectrum allow this 
overestimation to be eliminated. These two corner frequencies are however empirically derived, and 
they are difficult to apply outside the specific context of California.  
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