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SUMMARY:

This paper gives a new insight into the dynamicavéur of one-storey eccentric systems, with paldic
attention devoted to provide a comprehensive phllgibased formulation of the maximum corner
displacement amplification, which involves threentributions (translational response, torsional oese and
their combination). It is shown that the largestpéfications, which mainly occur for the class ofgionally-
flexible systems, are due to the translational rhoution through to the shift in the fundamentatipé of the
eccentric system with respect to the one of thavatpnt not-eccentric system. A simplified methaa the
estimation of the maximum corner displacement bamedhe physical properties of the system is finall
obtained.
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1. INTRODUCTION

Since the late 1970s, it is known that structutesracterized by non coincident center of mass and
center of stiffness, commonly defined as eccenfoic asymmetric) systems, when subjected to
dynamic excitation develop a coupled lateral-taralaesponse that may considerably increase their
local peak response, such as the corner displacenfiéan and Chopra 1977 (a and b) Rutenberg
1992, Hejal and Chopra 1987).

In order to effectively apply the performance-basiedign approach to seismic design, there is a
growing need for code-oriented methodologies aiategredicting deformation parameters. Thus, the
estimation of the displacement demand at diffelenations, especially for eccentric structures,

appears a fundamental issue. Furthermore, thayatulipredict the torsional response of eccentric
systems can be also useful to improve the capabilibne of the most actually used seismic design
approaches ( i.e. push-over analysis, Perus arfar 2805).

Since the early 1990s Nagarajaiah et al. 1993 stigegting the torsional coupling behavior of base-
isolated structures, observed that, for the speclfiss of torsionally-stiff asymmetric structuréds
maximum center mass displacement can be well appaded by the maximum displacement of the
equivalent not-eccentric system.

In previous research works (Trombetti 1994, Trorikmetd Conte 2005, Trombetti et al. 2008), the
authors identified a structural parameter, callagpifa”, capable of measuring the attitude of one-
storey asymmetric systems to develop rotationglaeses and proposed a simplified procedure, called
“Alpha-method”, for the estimation of the maximuangional response. In its original formulation, the
“Alpha-method” was based on the aforementioned rapion of equal maximum displacement
response between the eccentric system and theageptimot-eccentric system.

The object of the present paper is to provide aemmmmprehensive investigation on the dynamic



properties of one-storey eccentric systems, widtiig focus on the class of the so-called torsigna
flexible systems, which showed a greater attitudedéveloping consistent corner displacement
amplifications (Trombetti et al. 2008).

2. PROBLEM FORMULATION

Let us consider the one-storey eccentric struditeea system characterized by non-coincidentecent
of mass, CM, and center of stiffness, CK) displaie#ig. 2.1 (the origin of the reference system is
located at CM). It is assumed that the diaphragrmfigitely rigid in its own plane, and that the
lateral-resisting elements (e.g. columns, sheadsywal) are massless and axially inextensible. Hie s
torsional stiffnessk) of each lateral-resisting element is also negtikctUnder this assumption, the
following three degrees of freedom are assumedoi(gitudinal center mass displacemegicy, (ii)
transversal center mass displacemeyd,,, (iii) center mass rotationigcy , Which coincides with the
floor rotation,u, The system is subjected to a one-way dynamictaian (e.g. free vibrations or
seismic input) along the longitudinal direction rfrely, the y-direction).

From simple trigonometric relationships, with refiece to the plan view of the system given in Fig.
2.1, the longitudinal corner side displacement,the displacement of the flexible side of the syst
(e.g. point B, the farther from CKi), g, at any generic instant t, is given by:

Uy o) = Uy, (9= (D 2.1)

Estimating the corner displacement according to. Eqb requires the development of time-history
analyses. Nevertheless, the practical engineertésested in the absolute maximum valugs, max of

the corner displacement response history. Thusntiia purpose of this research work is to provide a
simple formulation for the evaluation Of g max Starting from:

uy,B,max = uy,q\,| ,max U u€ ,ma)% (22)

which highlights that the maximum corner displacetrtepends on the following three contributions:
« translational contribution, as given by the maximabsolute displacement respong@w max
of the center of mass governed by period shiftifigce (see section 4);
e torsional contribution, as given by the producttied maximum absolute rotational response
Ugmax and the lever arm L/2 (see section 5);
e combination of the translational and torsional dbuations of above, as indicated by symbol
O (see section 6).

Manipulation of Egn. 2.2 leads to:

u u
uy,B,max = uy,(;\,| ,maxN- ED Y e 1 D Sumax E!: (23)
y,Cy .max,N-E uy,(;VI ,max 2
Introducing the following parameters:
o Jg=—reMmX_which indicates the center mass displacementiiragion with respect to

uy,CM,maX,N— E
that of the equivalent not-eccentric system (NeE}w, max n-&

u
o Alir,=p, E—2"*_ which indicates a rotational parametay, (s the mass radius of
y,CM,max
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Figure 2.1.Plan view of the in-plane eccentric system with itidication of the degrees of freedom

gyration of the system);
« B, which is a parameter of simultaneity accountirmg the time combination of the
translational and torsional contributions;
L 3(L/B)

. = = which indicates a shape factor of the system.
2Pn  \1+(L/B)

2

Eqgn. 2.3 reduces to:

Uy g max = Uy g, maxn e O 1 + ADBLar ,[p) (2.4)

The objective of the work is to quantifies the \ehf 5[@1 + ABLa, D;o) that represents the corner
displacement magnification with respect to the egjeint N-E system.

3. THE DYNAMIC PROPERTIES OF ONE-STOREY ECCENTRIC SYSTEMS
3.1. The equation of motion

Under the following additional (with respect to sieoof section 2) assumptions:

« the total lateral stiffnesk of the system is the same along theand they-direction (i.e.
k=k=ky, wherek, andk, are the translational stiffness along tkeand they-direction,
respectively);

« the rotational responag developed under dynamic excitation is small enoteghllow the
approximation ;

» the longitudinal eccentricity is equal to zero.(E¢ = 0). This case maximizes the rotational
response of the system in free vibrations (Tronbetd Conte 2005);

the dynamic coupled lateral-torsional response haf system under consideration (Fig. 2.1) is
governed by the following set of coupled differahgquations of motion (Trombetti and Conte 2005),
written in a reference system with origin locate€CM:

0, (0 0,1 1 0 0 [luld B(d
m ) [+[d uyd |+m’lo 1 12 | yO |=| pO (3.1)
Pty (1) Prnl (1) 0 ev12 Q+127 || paw(d] | R(D/ Pn

where:



mis the mass of the system;-E,/D. is the relative eccentricity (hereafter it will benply indicated
ase); De is the equivalent diagonal equal togl2 Q,=w, /@, is a dimensionless parameter that

measures the torsional flexibility of the system @nd w, are the uncoupled translational natural
frequency of vibration and the uncoupled torsionatural frequency of vibration, defined in a
reference system with origin located at CK, regpelyt); [C] is the damping matrix (classical
damping is assumed).

The paramete® , represents a physical property of the eccentdtesy, leading to the two following
classes: (i) torsionally-stiff system&,=1.0 ; (i) torsionally-flexible systems2, <1.0

3.2. The eigenproblem

The solution of the eigenvalues problem governhmgundamped free vibrations of the system gives
the following closed-form expressions of naturagiuencieso,, wy,, ws, Nnormalized with respect to the
uncoupled longitudinal frequenecy and squared (Trombetti and Conte 2005):

Q,=(ar/a )" =1/2 1+ Q" + 127 '\/(ng+ 127 -)2+ 4832]

Q,=(w /)" =1 (3.2)

Q; =(w/a )’ =1/2 1+§292+1232+\/(ng+ 122 _;LZ+ 4&2j

Fig. 3.1 a plots the normalized natural frequenemsuse andQ, showing that: (ixy=0; (i) w,is
generally close toy; (iii) ws; can be quite larger than .

The solution of the eigenproblem also providesfefiewing vibration mode shapes (eigenvectors):

0 1 0
{at=| 1 |i{et=|0):i{a}=| 1 (3.3)
Q-1 0 Q,-1
eV12 eV12

The first and third modes of vibration are coupfeddes (i.e. translational component in y-direction
coupled with a torsional component), while the sglcamode is purely translational xadirection, due
to the assumption of null eccentricityyirdirection.

From Eqn. 3.2 the following expressions of the raltperiods of vibration, normalized with respext t
the uncoupled lateral peridd, can be obtained (Fig 3.1 b):

L L
TL 1 2

\/{1+Q92+12e2 -\/(ng+ 1267 ]) + 4832]

2

T, (3.4)
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3.3. The modal contribution factors

In order to understand how each mode of vibratmmtributes to the dynamic response of the system,
the closed-form expressions of the modal contridvufactorsMCF,;, i = 1,2,3, activated by a dynamic
input characterized by influence vector {0,1,0}e(iinput only along the y-direction), have been
derived (Fig. 3.1 ¢):

MCF, =0 (3.9)

Inspection of Fig. 3.1 ¢ leads to the following ebhstions:

« MCF;, =0 for all values oé andQ, results from the assumptions of null eccentrigitthey-
direction and influence vector along teirection;

» torsionally-stiff systems are principally governby the first mode of vibratiofT; that, as
showed in Fig. 3.1.a, is close to the second paiadbration,T,, which in turn is equal to the
uncoupled lateral periody;

< torsionally-flexible systems with small eccentrjc{e < 0.1) are mainly governed by the third
mode of vibration that is approximately equalTig torsionally-flexible systems with high
eccentricity € > 0.3) are substantially governed by the first enad vibration that may be
considerably higher tham_; for torsionally-flexible systems characterized dxcentricitye
between 0.1 and 0.3 bothandTscontribute to the dynamic response of the system.

4. THE DISPLACEMENT AMPLIFICATION AT THE CENTER MAS S: PERIOD SHIFTING

In the case of seismic excitation, the maximum exrentass displacement can be predicted using the
SRSS modal combination rule (Chopra 1995):

3
uy,CM,max D\/Z(Sd(-l:) DMC'iZ)Z (41)
i=1

where &(T;) indicates the spectral displacement responsk @t1,2,3). Under the assumption that
Si(T) is a linear function of the period(S(T)=¢ ‘T) Eqgn. 4.1 yields to:

MCF, 2 MCF, 2
Uy, e, max D¢TL\/ L + MCF}? + 3 (4.2)
Ql Q3

Dividing Eqgn. 4.2 by the center mass displacemérthe equivalentN-E system , cvmaxn-g the
following closed-form expression of the displacetemplification, d, as a function oé andQ, (Fig.
5.1 a) can be derived:

5= tromma o2 | 1 + ! (4.3)

Uy.cm maxn- € \/Ql[uez +(Q,- 1)2]2 93[1292 +(Qq- J)ZT
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Figure 3.1.(a) normalized natural frequencies; (b) normalimatural periods; (c) modal contribution factors

It should be noted that, for sake of concisenegs, &3 is not directly expressed in term£)f but in
terms of the normalized frequenci®g andQ; (functions ofe andQ). Inspection of Fig. 5.1.a reveals
that:
» for awide region o€ andQg, Jis close to one;
« for high values of eccentricitycoupled with low values d®4, the displacement amplification
ocan achieve values also larger than 5 (periodisgiéffect).

5. THE MAXIMUM ROTATIONAL RESPONSE
5.1. Undamped free vibration

In a previous research works (Trombetti and Coftb2, the authors identified a rotational parameter
called “alpha”, governing the maximum rotationapense of eccentric systems:

def u
_ 6, max
@ = 2T (5.1)
uy,CM ,max

In the case of undamped free vibrations from arginéial deformation, the alpha parameter assumes
the following closed-form expression (Trombetti a&bohte 2005):

4ey3 (5.2)
\/(ng +126? -1)2 + 48

a, =

where the subscriptindicates “undamped conditions”.

Fig. 5.1 b shows that, is bounded between zero and one. The above irteddwtational parameter
allows to express the maximum rotational resposdelbws:

Q.
ut?,max =— Duy CM ,max (53)

m

upper bounded by:

uB,max < uy CM ,max/ pm (54)
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Figure 5.1. (a)o versuse andQy; (b) a, versuse andQ,
5.2. Damped seismic response
In the case of damped systems subjected to seesikation, the alpha parameter is indicated as:

dff uH,max
ad,eqke - ,0 m (55)

u
y,CM, max d,eqgke

where the subscrifgt,egkeindicates “damped conditions and earthquake input”
By posing:

Adsz (5.6)

a,

the maximum rotational response experienced byngdd eccentric system under seismic excitation
can be expressed by the following simple relatigmsh

a,
Ug, max :p_uEADJy CM ,max (57)

m

ParameteA should be obtained and calibrated by means ohste numerical simulations, which
are currently under development. Preliminary rasinticates that for almost all valuesefindQ,
parameteA is upper bounded by 1 (isolated caseA afl. appeared for torsionally-flexible system).

6. THE COMBINATION OF THE MAXIMUM DISPLACEMENT RESP ONSE WITH THE
MAXIMUM ROTATIONAL RESPONSE

6.1. Undamped free vibration
The solution of the equations of motion of the sddeccentric system, in the case of undamped free

vibrations from a given initial displacememtalong they-direction, is given by (Trombetti and Conte
2005):

uy (t) = a[@ Rcos(wt)+ R cofw, ﬁ)
u(t)=0 (6.1)

ug(t) = 2 %(cos(a&t) - cos{a@t))

Pm

whereR; andR; are defined as follows (Trombetti and Conte 2005):



1-Q,
Ql_Q3
_ Ql -1
Q-0

(6.2)

Careful inspection of Eqns. 6.1 leads to the follmyobservations:
» the maximum longitudinal displacement is develofigda(t) =n7r and w;(t) =mr (with n
andm both odd or both even) and is equaatdhe corresponding rotation is zero;
« the maximum rotation is developed faf(t) =7 and w;(t) :(m+1)77 (with n andm both

even or odd) and is equal t@/g.)-a. The corresponding longitudinal displacement,
uy'CM@Lb max IS equal t(B"(Rl_Rg)

Based on the above mentioned observations, two dissumptions (HP1 and HP2) are introduced:
1. the maximum corner displacement is calculated ssipgoa full correlation between the
maximum rotational response and maximum center aiaptacement response (HP1):

L

uy,B,max,HPlz uy,CM ,max+ U ,maxE (63)
which can be easily rewritten as:
Uy B maxHP1= O Uy cm maxN EE@1+ a u@) (6.4)

2. the maximum corner displacement is calculated comfithe maximum rotational response
with the center mass displacement achieved atrtstant of maximum rotation, cyg,

(HP2):

Uy B maxHP2= Uy cM @y e T W may (6.5)
which can be easily rewritten as:

uy,B,max,HP2: a-ljuy,CM ,maxN EEQ( Rf R; ta u@) (66)

It is clear that Egns. 6.5 and 6.6 represent auppund and a lower bound for the maximum corner
displacement, respectively; thus:

<u

Uy BmaxHP2S Uy B maxS Uy B maxHp (6.7)

The following closed-form expressions of the cordisplacement amplifications result from the two
limiting assumptions HP1 and HP2 (Figs. 6.1):

Corner displacement magnification with respechtdenter mass displacement (Figs. 6.1 a and b):
Al _ Uy,B,max,HPl =1+q @
u
uy,CM,max (6 8)
AZ _ Uy,B,max,HPz — (Rl' P3)+augo

uy,CM ,max

Corner displacement magnification with respechtdenter mass displacement of the equivaleBt
system (Figs. 6.1 ¢ and d):



Uy BmaxHP1 _ _
Ay =—2"0= =0 = 0(1+a,9)

Uy, cM,max,N -E (6.9)

An-g. __Yy.BmaxHp2 _ S, = 5[(Rl- Rs)*'auC”J
Uy cM,max,N -E

Careful examination of the graphs plotted in F&4.lead to the following fundamental observations:

e both A; and A, are larger than one for all values of e ddg. This result justifies the
introduction of the assumption HP2 (lower boundhe Tmaximum corner displacement
amplificationsA; andA; are limited to values around 2.3 and 1.6, witkerefice to HP1 and
HP2, respectively;

* both Ay andAyg, are basically governed by (i.e. period shifting). In detail: (i) high
torsionally-stiff systems (i.eQ, >1.5) exhibit maximum corner displacement ampdificns
approximately equal to 2.5 and 2.0 with refererwéddP1l and HP2, respectively; (i) low
torsionally-stiff systems (§,[11) exhibit maximum corner displacement amplificao
approximately equal to 3.5 and 3.0 with referenceHP1l and HP2, respectively; (iii)
torsionally-flexible systems exhibit maximum corriésplacement amplifications larger than
5;

6.2. Damped seismic response

In the case of seismic excitation, a parameteirfilsaneity B is introduced to account for the time
correlation between the rotational and displacerseisimic responses.

ParameteB should be obtained and calibrated by means oihexte numerical simulations, which
are currently under development. However, it shdnddhoted that parametBris certainly less than 1
and therefore, from a conservative design poinvi@#, it can be taken equal to 1.

7. “ALPHA METHOD” FOR THE PREDICTION OF THE MAXIMUM  CORNER
DISPLACEMENT OF ECCENTRIC SYSTEMS

In a previous research work (Trombetti and Cortte),authors proposed a simplified method, called
“Alpha-method”, for the prediction of the maximuratational response of eccentric systems. The
original formulation of the method was developeniting to the study of torsionally-stiff system and
thus assuming that the maximum center mass digpkxteof the eccentric system can be reasonably
approximated by the corresponding displacemertiottjuivalent not-eccentric system.

The results presented in this paper lead to coremsite understanding of the dynamic behaviour of
eccentric system. The analytical tools detailedpiavious sections allow to extend the original
formulation of the “Alpha-method” to a generic este system, removing the assumption of equal
center mass displacement between the eccentriensysid its equivalent N-E system.
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(c) (d)
Figure 6.1.Corner displacement magnification with respect{ay:center mass displacement based on HP1; (b)
center mass displacement based on HP2; (c) ceates displacement of the equivalent N-E system baised
HP1 (d) center mass displacement of the equivileatsystem based on HP2

On the light of all the results reported in prexd@ections, the following formula for the evaluatiaf
the maximum corner displacement of an eccentritegysinder seismic excitation is proposed:

L‘Iy,B,max = L‘Iy,CM ,maxN- Ewml + ADBWUW) (71)

CONCLUSIONS

This paper provides a comprehensive insight int dignamic behaviour of one-storey eccentric
systems, aimed at increasing the knowledge ab@itldss of structures, as well as providing simple
tools for their seismic design. For the specifisecaf undamped eccentric systems in free vibrations
closed-form expressions for an upper bound andvarldound of the maximum longitudinal corner

displacement have been derived. Based on thesksressimplified approach for the seismic design
of eccentric systems, originally proposed by ththaufor the evaluation of the torsional responke o

torsionally-stiff eccentric systems, has been exVigccounting for all classes of eccentric systems.
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