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SUMMARY:

The effectiveness of viscous dampers in mitigathmg seismic excitation impacts upon building stiues has
been widely proved. Recently, a direct practicalcedure for dimensioning viscous dampers thatreseried in
building structures has been proposed. The proegdwiginally developed with reference to a shgpet
structures schematization, provides an easy ideatiibn of the mechanical characteristics of thenafiactured
viscous dampers. In detail this paper presentstianed approach aimed at obtaining simple directigie
formula for the dimensioning of each added viscdarmpers that are to be inserted in generic monessigting
frame structures.
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1. INTRODUCTION

Manufactured viscous dampers are hydraulic dewd@sh can be installed in structures in order to
mitigate the seismic effects through dissipatiorthef kinetic energy transmitted by the earthquake t
the structure (Soong and Dargush 1997, Constanéhal 1998, Christopoulos and Filiatrault 2006,).
These devices have been the objective of sevesahreh works since the 1980's (Constantinou and
Tadjbakhsh 1983, Constantinou and Symans 1993h&ind Moreschi 2002, Levy and Lavan 2006).
Nevertheless, even if all the above cited are rkatde from a scientific point of view (development
of sophisticated algorithms and complex procedurd®y hardly represent a direct and immediate
help for the practical engineers. Indeed, invesibiga about developing a practical method for gzin
viscous dampers, which are capable of achieviagget level of seismic performance, are still open.

Regarding to this aspect of assessing the viscangpelrs, only few contributions can be found in the
scientific literature. Among these, the most rerabi& are: (i) Christopoulos and Filiatrault 2006
suggested a practical design approach for estidtia damping constants of individual dampers
consisting in a trial and error procedure; (ii)v8atri et al. 2010 proposed a direct design approac
defined as five-step procedure.

The latter (five-step procedure) aims at guidirg phofessional engineer from the choice of theetarg
objective performance to the identification of thechanical characteristics (i.e. damping coeffigien
of commercially available viscous dampers. The wiwal developments presented in the original
version of the procedure (Silvestri et al. 2010yenheen carried out with reference to a Shear-Type
(referred hereafter with the acronym ST) structschematization. On the other hand, in the same
work (Silvestri et al. 2010) the authors added applicative example of the procedure developed on
two moment resisting frame, thus removing the aggiam of shear-type schematization.

Therefore, from a theoretical point of view, thegmse of the present work is to extend the validity
the proposed approach for a generic Flexible-TypE) (structure schematization, i.e. a structural
model which considers the actual stiffness of thans. This purpose will require a further insight



into the damping properties of systems typicallprelsterized by not proportional damping (Cheng
2001, Occhiuzzi 2009).

2. OVERVIEW OF THE FIVE-STEP PROCEDURE

Recently (Silvestri et al. 2010) the authors prepa direct five-step procedure for the dimensignin
of the damping coefficient of viscous dampers which was simply based on tie@viedge of the
floor masses and the fundamental period of vibnatiothe structure.

The procedure, called Five-step procedure, is ceeppof the following steps:
STEP 1. Identification of the target damping rafioof the structure on the basis of a chosen
target leveln of structural performanceg, is the reduction factor used to reduce the

spectral ordinates as a function of the dampirig.rat
STEP 2. Identification of the tentative characterss of the linear viscous dampers for

preliminary design (i.e. linear damping rat'rcg,za; damping exponentx =1.0; oil
stiffness,k;, =), i.e. first dimensioning of the linear dampingeftficients.

STEP 3. Development of a series of preliminary thigtory analyses of the building structure
equipped with the viscous dampers identified irpS&eThis step allows to: (i) sizing
the linear damping coefficients of the dampersdatided to the structure in order to
achieve the desired level of actions (axial forsbgar forces, bending moments, etc.)
on the structural members of the building; andifigntify the range of “working”
velocities for the linear added viscous dampers.

STEP 4. Identification of the characteristics oé tlequivalent” non-linear viscous dampers
(cy =Cy, a=a , k; =k, ), i.e. identification of a system of manufacturéstous
dampers capable of providing the structure withioast (on the structural members)
comparable to those obtained in Step 3 using tieativiscous dampers identified in
Step 2.

STEP 5. Development of a series of final time-higtanalyses of the building structure
equipped with the viscous dampers identified impSteThis last step is necessary in
order to verify the effectiveness of Step 4 andawbthe forces both trough the
structural members and dampers which are to be deedthe final design
specifications.

The original contribution of this procedure liesaimly, on the STEP 2, which provides simple
relationships (Egs. 27, 28 and 29 of Silvestrile2@10), for the calculation of the damping coaéint
c of each viscous damper in order to achieve thpqe®ed performance objective.

3. DAMPING PROPERTIES OF FRAME SYSTEMS WITH ADDED V ISCOUS DAMPERS:
OVERVIEW

In previous works (Silvestri et. al 2003, Trombettid Silvestri 2004, 2006 and 2007, Silvestri and
Trombetti 2007) the authors showed that the propmat damping and its two limiting cases (i.e.
Mass Proportional Damping, MPD, and Stiffness Propoal Damping, SPD) do have a physical
counterpart in ST structures equipped with addedotis dampers in the case of (i) equal lamped mass
m at each floor, (ii) constant translational stifed& at each floor. On the contrary, regarding to a
generic flexible-type (FT) frame equipped with adldéscous dampers, the damping system may not
be always schematized using the classic Rayleigbryh(i.e. proportional damping, Chopra 1995).

In order to illustrate a tangible instance relevamtthe above mentioned concept, a 3-storey FT
structure equipped with Inter-Story dampers (regaméed in Fig. 3.1) has been posed as a typical
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Figure 3.1.3-storey flexible-type structure equipped withenstorey dampers.

exemplification for all same cases. In Fig. 8y4(i=1,...,3) indicates the floor mass of the i-thrgi;
(i=1,...,3) indicates the translational lateral st#§s of the i-th storeyg (i=1,...,6) indicates the i-th
rotational degree of freedom; (i=1,...,3) indicates the translational degree efeffom (the beams
axial flexibility is neglected). Under the assuroptiof: (i) neglecting the axial flexibility of the
system; (i) static condensation of the rotatictedrees of freedor§ (Clough and Penzien 1993); the
system showed in Fig. 3.1 has three degrees aldreeThe mass, stiffness and damping matrixes of
the existing system presented in the example Hee/étlowing matrix form:

m
[M]= m, (3.1)
m, |
k11 k12 kl3_
[K]=] Ky Ky Ky (3.2)
k31 k32 k33_
C *¢, —C, 0
[C]=| -c, c,+c, (3.3)

0 -G C;

From Eqgns. 3.1 to 3.3 it can clearly deduced tKti§ a fully populated matrix;M] is a diagonal
matrix; [C] is a band matrix. Therefore, in this case itas possible to obtain the damping mati® [

in the proportional form (i.e(] = a- [M] + 8- [K] ).

To cut a long story short, Table 3.1 provides as@h of the type of damping related to the coupling
of a certain structure schematization (i.e. ST ©) Wwith a certain dampers placement (i.e. Fixed-
Point, FP, or Inter-Storey, 1S).

In the next sections the relationship between #raping ratioc and the damping coefficiegtwill be
investigated starting from frame structures equippéth Fixed-Point dampers and then moving to
frame structures equipped with Inter-Storey dampers



Table 3.1.Type of damping for different typologies of “systé

Dampers placement

Type of damping

ST schematization

FB schematization

FP placement

Proportional (MPD)
System C (see Sec. 4

Proportional (MPD)

IS placement

Proportional (SPD)
System B (see Sec. 4

Not-proportional
System A (see Sec. 4

4. PROBLEM FORMULATION

The “system” defined here is composed of a spefiifime structure (characterized by floor mags
with i=1,..N , column moment of inertid, with i=1,...N , N indicates the number of stories) equipped
with a specific damping system (i.e. damping ceedfitsc, j=1,..N x n, wheren indicates the number
of dampers per each floor).

System A, graphically represented in Fig. 3.2,e8reéd as a flexible-type frame structure (floorssia
My i, column moment of inertid, ;) equipped with inter-storey viscous dampers (daggpefficients
Caj, total damping coefficienta o, SUM of thec,).

The objective of the research work is the iderdifion of the values of the total damping coeffitien
Ca ot OF the single damping coefficierts; of the dampers of system A in order to obtainrgetavalue

of damping ratiod (Step 1, section 4):

Caro =  (£) (4.1)

Or:
cy; =f(8) O (4.2)
In order to achieve this objective, it is necessamtroduce the following systems:

« System B, that is graphically represented in Fig, & defined as the shear-type frame
structure with the same properties (im; = Ma;, Jg;i = Jaj) as defined in system A, but
different translational stiffnes&g; # ka i, due to the restrained rotation of the nodes)pupd
with inter-storey viscous dampers, characterisethbysame total damping coefficient of the
damping system of system Agfo = Cator)- It Should be mentioned that the fundamental
frequencies of the two systemay andw, are different.

» System C, that is graphically represented in Fi@. i8 defined as the shear-type frame
structure with the same propertiesc(= mg;, Jc;= Jg;, and same restrained rotations of the
nodes) as defined in system B, equipped with figeiht viscous dampers, characterised by
the same total damping coefficient of the dampiygfesn of system Bcg := Cg o). Clearly
systems B and C are characterized by the samerhamal frequencyd is equal toar).

According to structural dynamics (Chopra 1995js ivell known that the total damping coefficient of
system C can be expressed as a function of theespmnding damping ratio by the following
equations (MPD schematization):

Ce ot = 204, Lo [y, (4.3)

Since no analytical relationships are currentlyilatée in order to express the total damping
coefficient of system A as a function of its fundartal damping ratio, then the procedure
schematically illustrated in the flowchart reportadrig. 3.3 is introduced. The first stage of floav
chart consists in the derivation of a relationdhgween the fundamental damping ratio of system A
and system B and represents the core of the pressdrch work, since the second stage (consisting
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Figure 3.2.Schematic representation of: (a) System A; (b}e3yB; (c) System C.
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Figure 3.3.Flowchart of the scheme adopted to reach the tgeaf the research work.

in determining the correlation between the fundaadedamping ratio of systems B and C) was the
fundamental result of a previous research work ld@esl by the authors (Trombetti and Silvestri
2006).

Details of the two stages of the flow chart will gigen in the following sections.

5. THE RELATIONSHIP BETWEEN THE FUNDAMENTAL DAMPING RATIOS OF
SYSTEMS A, BAND C

In a previous research work (Trombetti and Silve2006), under the assumption of equal lateral
stiffness and lateral mass at every storay=m [ i andk; = k 0 i), the authors demonstrated that the
fundamental damping ratio between system B andn@guthe constrain that the two systems have
equal total damping coefficients) can be expregsettie following exact relationship:

f=—X (5.2)

mén.>



that can be well approximated by (Trombetti andeSitri 2004):
N(N+1
& 0N g, (5.2)

It has been showed in section 3 that, while fotesysB and system C it is possible to define the
damping matrix on the basis of the SPD or MPD Ilimgjt cases (i.e. physical counterpart),
respectively, as far as system A is concerned,necessary to recur to the theory of complex dagnpi
(Cheng 2001, Occhiuzzi 2009). In detail, insteadseérching for an exact analytical relationship
between the fundamental damping ratio of systermé system B, a numerical procedure has been
preferred.

For damped SDOF systems, an analytical relationbbigveen the fundamental damping ratios of
systems A and B can be drawn starting from thecbesncepts of structural dynamics (the “basic
idea”, as detailed in next section 5.1).

For damped MDOF systems, a numerical analysis padd in the field of complex damping has
been conducted in order to verify if the same i@teship still holds (next section 5.2).

5.1. The basic idea

Two equivalent (same masg same column moment of inertlaand same damping coefficiecit
SDOF systems are considered (Fig. 5.1): the finstrepresents a one-storey one-bay shear-type (ST)
structure equipped with an interstory viscous darged the second one represents a one-story one-
bay flexible type (FT) structure equipped with amerstory viscous damper. Due to the different
stiffness of the beams, the fundamental periodeefwo defined systems (definedTas andT:y) are

not equal. Under the abovementioned assumptiois, #asy to show that the ratio of the modal
damping ratios pertained to the two systems istgxélce same as the corresponding ratio of the
fundamental periods:

5 :fFT :c/ZDmDafT :aPT :TFT _
COET /2l T T Pr

(5.3)

5.2. Numerical analysis: main results

The numerical analysis has been carried out orfléiéle-type structures schematized in Fig. 5.2,
which are characterized by the following main prtips:
* Number of storied\, variable from 2 to 6;
¢ Number of bays equal to 1;
e Bay width equal to 6 m;
* Interstory height equal to 3 m;
e Square Columns with constant cross section 40x40atreach storey (fixed for all the
models);
* Beams with constant cross section for all stomg$efent for each model);
* Floor massn equal to 80000 kg;
+ Beam-Column Stiffness ratiopg =Kymn/ Kgum - variable from 0,5 too  (shear type
system);
* Elastic material with Young’s modulug, equal to 20000 MPa.
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Figure 5.1.(a) Shear-type SDOF system equipped with viscansper; (b) Flexible-type SDOF system
equipped with viscous damper.
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Figure 5.2.Schematic representation of the MDOF frame systesad to perform the numerical analysis.

Considering th&-th FT system each single analysis included thevehg phases: (i) evaluation of
the fundamental modal damping rat'tf;,FT , by means of the complex damping theory (Cher@ii 0

(all the details regarding to the calculations barfound in Muscio 2009); (ii) evaluation of thesfi
modal damping ratio of the equivalent ST systemmrimans of the Rayleigh theory (Chopra 1995),

EkST; (iii) evaluation of the ratio of the fundamentabdal damping ratios between the FT structure
and the equivalent ST structurg;_, ; (iv) evaluation of the ratio of the fundamentatipds between

the FT structure and the equivalent ST structyre, .

The main results are briefly illustrated througlgs=i5.3 which display the relationship between

and p; (Fig 5.3 a) oy and p; (Fig 5.3 b) ando; and p; (Fig 5.4 c). Inspection of the graphs leads

to the following deductions:
« for all values of flexibility ratio,p; , o is higher than the correspondipy ;

« as might be reasonably expected, for a fixed vafugy , both o, and pr increase with the

increase of the total number of stofdy
* as might be reasonably expected, bpthand p; increase agpy decreases;

» the values ofp, and po; exhibit an high linear correlation (correlationefficient equal to

0.98);
+ the values of the ratig,; are higher than the corresponding (i.e. the vahleulated to the

same structure) values of the rapip; thus, o; can be assumed as lower bound pr,

 for practical applicationo, can be assumed equal m® ; the assumption leads to slightly
conservative results.
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5.3. The “approximate” relationship

Based on the fundamental result of the numericalyars commented above (and summarized in Figs.
5.3), the following approximate relationship betwele fundamental modal damping ratio of system
A and B, can be assumed for design purpose:

& D6 (5.4)

A

Or in terms of fundamental frequencies:
& 05, d2 (5.5)
Uk

Eqns. 5.4 or 5.5 represent the objective relatipnshthe stage 1 of the flow chart given in Fig3.3
5.4. The total damping coefficient for system A

The fundamental result provided by the numericallysmis (Eqn. 5.4 or 5.5) allows us to obtain a
simple formula for the dimensioning of the totalmgang coefficientc, of system A in order to

achieve the target damping rafa In more details, according to the flowchart repraed in Fig. 3.3,
the following simple (like design formula) expressiof the total damping coefficient . for system
A, leading to the target damping ratfo, is engendered by merely substitution of Egnim®5.2 and
then Egn. 4.3 (note tha; = w):

Cacor O& (20, [, INT(N +1) (5.6)
Eqn. 5.6 represents the fundamental result of teeemt research work. It should be mentioned that
Eqgn. 5.6 is identical to Eqgn. 27 of (Silvestri €t2010). However, while the latter was derivedduhs
on the assumption of shear-type structure scheatatiz Eqn. 5.6 keeps its validity for a generic
flexible-type frame structure.

6. THE DIMENSIONING OF EACH VISCOUS DAMPER

In the previous section a simple analytical relalip (Eqn. 5.6) for the evaluation of the total
damping coefficient,; of a system composed by interstorey dampers @mlled to moment-resisting



frame structures has been provided. However, fralesagn point of view, the practical engineer is
interested in sizing each damper rather than etmatushe total damping coefficient. Therefore, in
order to obtain simple design relationships for thmensioning of each damper the following
assumptions are considered:
« for Fixed-Point damper placement, based on theespandence and compatibility (i.e.
physical counterpart) which exist between the MRBoty and the FP dampers placement,
then the i-th storey damping coefficianis proportional to the i-th floor mass;

-m
=—1 g, 6.1
G Otma (6.1)

o for Inter-Story damper placement, the i-th storegmging coefficient can be only
approximately assumed proportional to the i-thrkdtetorey stiffness (however for practical
purpose the assumption is reasonable):

¢ Dkti T 6.2)

wherek, is the sum of the storey lateral stiffness ovestaries.

Obviously it can be simply noticed that,nfequal dampers are placed at each storey, the dgmpi
coefficientc of each damper results equal to:

o
1
s |0

(6.3)

Thus:
(i) in the case of IS dampers placement the sultisiit of Eqns. 6.2 into 6.3 (assuming equal lateral
stiffnessk at each floor) and then into Egns. 5.6 leads to:

c= ¢ @My IN+D) (6.4)

n

(i) in the case of FP dampers placement the dulisti of Egns. 6.1 in 6.3 (assuming equal lamped
mass m at each floor) and then into Eqn. 4.3 (irmgo& = &) leads to:
In the case of Fixed-Point dampers placement

o= 2 ol

- (6.5)

Egns. 6.4 and 6.5 are direct design formulas ferdimensioning of viscous dampers that are to be
inserted in moment resisting frame structures ieprto make them able to satisfy a prescribed

performance objective (i.e. the achievement of rgetadamping ratio reductiod , i.e. a target
reduction coefficienty ):

CONCLUSIONS

This paper demonstrates the effectiveness of applgi practical procedure for dimensioning added
viscous dampers that are inserted in moment regi$tame systems, known as five-step procedure.



The procedure, which was originally developed byuasng a Shear-Type structure schematization,
the proposed a direct simple design formula thiaial to size the damping coefficieatwhich is
pertained to each damper, according to the knowledghe building mass and fundamental period,
which can be evaluated easily by the practicalressgis.

The demonstration of the validity of the propospgraach for a generic moment resisting frame, thus
removing the assumption of Shear-Type structuresrsetization, has been provided through an
insight into the damping properties of the studigdtems in accordance with the theory of complex
damping.
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