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SUMMARY:  

An algorithm for the calculation of Uniform Annual Failure Rate spectra corresponding to a simple structure 

with a Friction Pendulum Isolation System is proposed. The structural failure is defined as the annual 

exceedance of a target structural base displacement. The maximum seismic response is calculated numerically 

from the solution of a system of simultaneous equations of motion corresponding to a two-degree-of-freedom 

system. The main structure is supposed to present linear elastic behavior, while the friction pendulum isolation 

system undergoes hysteretic behavior under cyclic loads. The isolation system behavior is represented by means 

of the Bouc-Wen model. The numerical algorithm proposed can be easily systematized in a computer program.  
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1. INTRODUCTION 

 

Seismic events occurred in the past have shown that earthquakes with moderate intensity can produce 

damage and important economical losses due to repair or replacement of buildings contents. Base 

isolation constitutes a solution to prevent damage in structures or in their contents, due to the 

decoupling between structure and ground motion (Kelly 1990; Zayas 1987).  

 

One of the most commonly used isolation devices is the Friction Pendulum System (FPS) which 

consists of a spherical surface of steel coated with teflon and of a component which slides on the 

surface (Zayas, 1987). One advantage of the FPS, compared for example with the elastomeric system, 

is that it does not need an extra device to introduce damping, and also that their displacements are 

limited by the retainers and can not exceed the maximum value; however, a disadvantage is the 

dependency between the bearing pressure and the kinetic friction coefficient, which is uncertain.  

 

In this study a methodology to calculate Uniform Annual Failure Rate (UAFR) spectra corresponding 

to a two-degree-of-freedom (2DOF) FPS structure is proposed. Here, the structural failure is defined 

as the exceedance of a target structural base displacement. Maximum response values are calculated 

numerically from the solution of a system of simultaneous equations (which correspond to the main 

structure and to the FPS). It is assumed that the main structure presents linear elastic behavior, while 

the isolation system presents nonlinear behavior. The structural cyclic behavior of the FPS is 

represented by means of the Bouc-Wen model (Bouc 1967, Wen 1976, Morgan and Mahin 2011). An 

illustrative example is presented.  

 
 

2. NONLINEAR DYNAMIC ANALYSIS OF A TWO-DEGREE-OF-FREEDOM SYSTEM 

WITH VISCOUS DAMPING  
 

The model of 2DOF system (one degree corresponding to the isolator device and the other to the 



structure) with viscous damping can be represented as shown in Figure 1 (Kelly, 1990): 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Two-degree-of-freedom system used to represent the isolator and the structure 

 

where m, C, and K represent the mass, the viscous damping and the stiffness, respectively, and ug, 

ubase, and ustruc are the relative displacements of the ground, the isolator and the structure, respectively. 

 

The equation of motion of the structure-isolator system shown in Figure 1 is: 

 

0)()(  gbasebasegbasebasebasebasestrucstruc uukuucumum   (2.1) 

0)()(  basestrucstrucbasestrucstrucstrucstruc uukuucum   (2.2) 

 

Next, we define the following relative displacements: 

 

basestrucstruc uuv   (2.3) 

gbasebase uuv   (2.4) 

 

and then substituting into equation (2.1), it is obtained: 

 

gstrucbasebasebasebasebasebasestrucbasestrucstruc ummvkvcvmmvm  )()( 
 (2.5) 

 

Similarly, substituting equation (2.3) in (2.2): 

 

gstrucstrucstrucstrucstrucbasestrucstrucstruc umvkvcvmvm  
 (2.6) 

Dividing equation (2.5) between ( strucbase mm  ) and equating to zero, results:  
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From the above equation, it is obtained: 
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Following the same procedure with equation (2.6) it is obtained: 
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3. COULOMB DAMPING DEVELOPED IN THE SIMPLE FRICTION PENDULUM 

ISOLATION SYSTEM 
 

3.1. Coulomb damping 

 

The simple FPS is composed of a slider that rests on a spherical surface of polished stainless steel. The 

surface is usually coated with teflon. Figure 2 shows the simple FPS device, and Figure 3 shows its 

cross section and the forces (F, W, N and Ff) acting on it (Symans, 2008). 

 

 
 

Figure 2. Radius of curvature for a typical FPS 

 

                      
 
 

Figure 3. Balance of forces and displacement configuration 

 

From Figure 3, it is obtained: 
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where gmW . , W is the weight, m is the mass, g is the acceleration of gravity, and   is the 

coefficient of kinetic friction.  

 

Considering the forces acting on the horizontal axis (x), we have the following: 

 

0costan   fFWF  (3.2) 
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Substituting the foregoing values and the Ff  value (equation 3.1) in equation (3.2), we get: 
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If x<<R then RxR  22
 and RxR  22

 . From these approximations we obtain:  
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where R is the radius,   is the coefficient of friction, x and )sgn(x  is the displacement and signum 

function of the velocity, respectively. As shown in equation (3.4), the restoring force of the pendulum 

is composed of two parts: one associated with weight W, and the other associated with the frictional 

forces developed by the isolator system.  

 

The stiffness of the friction pendulum bearing is given by the following equation (Zayas and Low, 

2000): 
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Substituting equation (3.4) in (2.7), we have the following expression: 
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Substituting equation (3.5) in the above equation, it is obtained: 
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Equation (3.6) is the linear equation considering that the isolator displacements are smaller than 0.2R, 

which guarantees an error smaller than 2% (Symans 2008, Morgan and Mahin 2011). 

 

 

 

3.2. Coefficient of friction 

 

One of the main disadvantages of the friction isolation bearings lies in the uncertainty implicit in the 

coefficient of friction . Constantinou et al. (1990) found that the friction coefficient is a function of 

the maximum as well as of the minimum velocity. FEMA 450 (2003) considers a constant value of  



over time in designing the sliding isolation system, and proposes an equivalent damping constant 

value. In this study it is considered that the coefficient   depends on the velocity, and is given by 

(Constantinou et al. 1990): 

 

)exp()( minmaxmax vb    (3.7) 

 

where v  is the velocity and b is a constant that is considered equal to 1.524 in this study. 

 

 

 

4. SYSTEM OF SIMULTANEOUS EQUATIONS OF MOTION  

 

4.1. Bouc-Wen model  

 

In the following it is considered that the total restoring force is a nonlinear hysteretic function 

represented by the inertial forces and the restoring force, which depends on the ground acceleration 

)(tug
 : 

 

)(),,()( tumtuuqtum g
   (4.1) 

 

where ),,( tuuq   is the restoring force, u is the relative displacement of the system and the dot indicates 

derivative with respect to time t. 

 

The restoring force can be decomposed into two parts (Wen, 1976): a non-hysteretic and a nonlinear 

hysteretic component )(),(),,( uhuugtuuq   . A general representation of the hysteretic restoring force 

(Constantinou et al. 1990) is Wz  in which z is the hysteretic component that in this work is 

considered to be nonlinear (see equation 3.7). 

 

The hysteretic component can be represented by means of different mathematical models. One of them 

is the Bouc-Wen model (proposed by Bouc 1967 and modified by Wen 1976) represented by the 

following mathematical expression:   
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where υ,Γ3  and    are parameters that consider the damage; 4Γ  and 5  are parameters that depend 

on the physical properties, and 6Γ  takes into account the transition between elastic and inelastic 

behavior. 

 

 

4.2. System of simultaneous equations of motion 

 

The system of equations that governs the two-degree-of-freedom FPS is presented in this section. It is 

assumed that the structure presents linear behavior and the isolator has nonlinear behavior. The 

following change of variables is adopted in the formulation: 

.54321 strucstrucbasebasebase vy,vy,zy,vy,vy  
.  

 

The resulting system of simultaneous equations of motion is: 
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5. ILLUSTRATIVE EXAMPLE 
 

In order to verify the applicability of the system given by equations (4.3), a simple example was 

developed. It corresponds 2DOF system with the following properties: strucT = 1s, strucW =1.526 ton, 

struc = 5%, base,2 = 0.06, base,3  =1, basebase ,5,4  =0.5, base,6  = 15. The structure was subjected to the 

accelerogram recorded on 19 September 1985 in Mexico City in Viveros station. The hysteretic cycles 

of the structure and of the isolating system are shown in Figure 4. The isolator permits a maximum 

static load of 8000 kN assuming a curvature R=4m, and the maximum displacement permitted in any 

direction is 0.5 m (www.fip-group.it). 

 

 

 

 
 

  Figure 4. Hysteretic cycles  

 

6. CALCULATION OF UNIFORM ANNUAL FAILURE RATE (UAFR) SPECTRA  

 

Equations (4.3) can be used for different objectives. One of them is to calculate uniform annual rate 

(UAFR) spectra corresponding to structural systems with FPS, and another is to use the UAFR spectra 

for reliability-design purposes. 

 

The algorithm proposed here to calculate the demand hazard curves and, from them, the uniform 

annual rate (UAFR) spectra corresponding to structural systems with FPS is inspired in that proposed 

http://www.fip-group.it/


by the authors (Rivera and Ruiz 2007) for structures with energy dissipating devices. The steps to 

follow are: 

 

1. Values of the following parameters corresponding to the structure-isolator system are proposed: 

R, basestruc mm , , strucK , baseK ,
max  and min and base,4  = 5.0,5  base . 

2.  The values of the stiffness baseK  is calculated  

3. Each combined 2DOF system is subjected to a different accelerogram (recorded or simulated), 

scaled so that the spectral acceleration associated with the fundamental period of the system under 

study corresponds to a specified return interval ( RT ) (Shome and Cornell 1995). The ratio between 

the spectral acceleration value and the inverse of the return interval is given by the site seismic 

hazard curve, which is assumed to be known. 

4. The peak system base displacement ( id ) and the peak acceleration ( ia ) at the top of the system, 

corresponding to the i-th accelerogram are calculated. 

5.  Structural failure of the 2DOF isolating system occurs when displacement in the isolating system is 

larger than ad  = target displacement. That is, when 1/  iai Qdd . The annual structural failure 

rate is evaluated by means of (Esteva and Ruiz 1989): 
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where ydd  /  it is the absolute value of the derivative of the site seismic hazard curve (which is 

assumed to be known), and )1( yQP   is the conditional probability that the structural failure 

occurs, given a seismic intensity y . 

6. The integral is evaluated numerically for different values of the parameters. With the results, the 

demand hazard curves associated with 2DOF combined systems with different vibration periods are 

determined.  

7. The uniform annual rate (UAFR) spectra are drawn on the basis of the demand hazard curves 

associated with different structural vibration periods. 

 

7. RESULTS 

 

In the following some results of the example mentioned above are shown. Figure 5 presents the 

probability  yQP 1  of exceeding limiting displacements da = 0.1R, 0.15R and 0.2R, for different 

intensity values Sa/g, and in Figure 6 shows the base displacement hazard curve corresponding to the 

structure having structural period Tstruc = 1s . 

 

 



 
   

Figure 5. Vulnerability functions corresponding to different target displacements for Tstruc=1 s. 
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  Figure 6. Demand hazard curve associated with the base displacement. 

 

 

8. CONCLUSIONS  

 

A system of simultaneous equations of motion that governs the dynamic response of a friction 

pendulum isolated structural system, represented by means a two-degree-of-freedom system and using 

the Bouc-Wen model, is presented.  

 

The numerical algorithm proposed above for obtaining demand hazard curves and, from these, the 

uniform annual failure rate (UAFR) spectra for FPI systems can be easily systematized in a computer 

program. 

 

The UAFR spectra corresponding to FPS can be useful for reliability-based design purposes. 
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