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SUMMARY:  
In the paper, the seismic performance of steel frames equipped with nonlinear viscous dampers is analysed and a 
practical design approach is presented. The proposed strategy is tailored to design new seismic resistant 
structures or improve the response of existing frames, where the use of nonlinear fluid viscous dampers allows a 
significant reduction in structural damage and lateral displacements under earthquake loading. The effectiveness 
of the proposed design procedure is checked considering the results of nonlinear dynamic simulations. In the 
numerical description for steel frames, beams and columns are modelled using plastic beam elements and 
nonlinear rotational springs are employed for representing the hysteretic behaviour of beam-to-column 
connections. The numerical outcomes confirm that the use of nonlinear viscous dampers guarantees not only a 
limited interstorey drift demand and a reduced plastic damage in the frame but also no increase in base shear. 
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1. INTRODUCTION 
 
In the paper the seismic response of hybrid systems made up of semi-continuous steel frames equipped 
with viscous dampers (Fig. 1.1.a) is analysed. Under earthquake loading, steel frames with semi-rigid 
joints (Fig. 1.1.b), which are simple and economic structural systems, are characterised by high 
performance at ultimate limit state (ULS), thanks to the plastic dissipation capacity of the beam-to-
column connections in bending. However the large lateral flexibility and joint damage, even under 
frequent seismic events, prevent their use when the limitation of damage in structural and non-
structural components is the main design criterion. Previous research (Amadio et al. 2008, Amadio et 
al. 2009) has shown that the seismic response of existing steel and steel-composite frames not 
designed to withstand earthquake loading can be significantly improved using bracings with 
dissipative devices. In (Amadio et al. 2009), steel X-braces or visco-elastic dampers have been 
considered for the seismic upgrade of existing semi-continuous frames pointing out the superior 
performance of the latter solution.  
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Figure 1.1. (a) Viscously damped steel frames. (b) Semi-rigid joints with angles. (c) Viscous fluid device 



In this research nonlinear fluid viscous dampers (Soong and Dargush 1997), Fig. 1.1.c, are considered. 
Their behaviour is not significantly affected by temperature and stress frequency and they do not 
experience damage when in use, thus not requiring any repair or substitution after a seismic event. In 
general, when using viscous dampers connected to bracing elements to retrofit steel frames, hybrid 
systems are formed (viscously damped braced frames - VDBF). These are characterised by a seismic 
response with small interstorey drifts, like in the case of frames strengthened using traditional bracing 
systems, very limited damage in structural components and no increase in base shear (Amadio et al. 
2008). The design of nonlinear viscous dampers is usually carried out using energy considerations and 
requires some amount of trial and error (Christopoulos and Filiatrault 2006). In particular it is assumed 
that the earthquake input energy is mainly dissipated by the inherent damping of the frame and the 
damping provided by the supplemental viscous fluid devices, usually considering that the main 
structural system (e.g. steel frame) remains elastic under earthquake loading. This becomes 
impractical and not economic in the case of seismic rehabilitation of existing structures, when a 
limited amount of structural damage should be acceptable. Thus recent research (Hwang et al. 2008, 
Goel 2005) and the most advanced codes of practice (FEMA 1997) suggest design strategies based on 
the use of nonlinear procedures to determine the level of supplemental damping required to satisfied 
the design objectives, and implicitly allow structural damage in the rehabilitated structure.  
In the following, the main characteristics of fluid viscous devices are mentioned and the equivalent 
damping coefficient for a viscous dampers and for MDOF systems with viscous nonlinear devices 
(e.g. VDBF) are reported. A practical design strategy is then presented, where the Capacity Spectrum 
Method (Freeman 1998, Fajfar 1999) with damped demand spectra is employed to calculate the 
required supplemental damping and to estimate the performance of the analysed structure at different 
limit states. Finally the proposed design strategy is used for the seismic upgrading of a steel frame, and 
nonlinear dynamic analyses are employed to investigate the response of the frame equipped with 
nonlinear viscous dampers.  
 
2. VISCOUS DAMPERS 
 
Fig. 1.1.c shows a viscous fluid device, where a piston can move under a compression force causing 
the fluid to flow along the cylinder. The force resisted by the damper is due to the difference in 
pressure at the two sides of the cylinder and is generally given by the expression (Soong and Dargush 
1997):  
 

 DF C u sgn u            (2.1) 
 

where C  is the viscous damping constant, u  is the relative velocity between the two ends of the 
damper,  is a velocity coefficient in the range of 0.2 to 1, which is characteristic of the device (Soong 
and Dargush 1997). A device with  1   is  called linear viscous damper and the force FD is 
proportional to relative velocity. Dampers with   1   are named nonlinear viscous dampers and, at 
low velocity, provide a higher resistance FD than linear dampers. Finally dampers with   1   are rarely 
used in practical applications as viscous dissipative devices for seismic upgrading.  
 

u

FD

>1.00

<1.00

=1.00

.

 
(a) 

u

FD

=1.00

=0.50

=0.05

 
(b)

 
Figure 2.1. Force-velocity curves (a) and force-displacement curves (b) for viscous dissipation systems  



 
In general, when the velocity coefficient is close to 0, the nonlinear viscous damper provides a nearly 
constant resistance over a wide speed range (Fig. 2.1.a). Fig. 2.1.b shows the force-displacement curve 
for devices with different velocity coefficients. It can be observed how dampers with small  values 
are characterised by a large energy dissipation capacity, which is represented by the area inside the 
curves for a force-displacement cycle.  
 
2.1. Damping coefficient for VDBF 
 
The main mechanical parameter representing the energy dissipation capacity of the coupled system to 
be considered in the design procedure is the equivalent damping coefficient Sd . In the following, Sd  
is firstly calculated for a SDOF system and then the result is extended to MDOF coupled systems 
representing multi-storey VDBFs. In the latter case, the equivalent damping coefficient is given by the 
sum of bare frame contribution 0  and the damping coefficient due to the supplemental viscous 

dampers d :  
 

Sd 0 d               (2.2) 
 

For a SDOF system, d  can be determined considering the energy dissipated by the viscous device 
WD under an imposed sinusoidal displacement time history u(t) (Hwang 2002): 
 

   0u t u sin t           (2.3) 
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where  is the excitation frequency, u0 is the displacement amplitude,  is the velocity coefficient for 
the viscous damping, C is the viscous damping constant, while  is the function: 
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Using the relationships above, the equivalent damping for the nonlinear viscous device can then 
obtained using the expression (Hwang 2002): 
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where m is the mass of the whole system and Wk is the elastic deformation in a cycle, which can be 
energy expressed as: 
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In the case of frames equipped with linear or nonlinear viscous dampers, the damping devices do not 
change the stiffness of the bare frame. Thus if the MDOF coupled system is characterised by a mass 
mj and a device with viscous coefficient Cj at floor j, the relationship for the equivalent damping can 
be derived from (2.6) considering the first vibration mode of the bare frame with circular frequency 0. 



Thus the strain energy is given by: 
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Then if all the dampers have the same velocity coefficient , the total damping due to the dissipative 
devices becomes: 
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where rju  is the relative displacement between the ends of the damper j and j  represents the damper 

inclination angle to the horizontal. Considering again the first mode of vibration for the analysed 
framed structure, the lateral displacement at each floor is given by: 
 

j ju A                      (2.11) 
 

with j  is the normalised displacement at floor j and A is the maximum lateral displacement. Thus the 

damping due to the viscous devices can be expressed as:  
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where rj  is the normalised interstorey drift modal vector. 

 
3. DESIGN PROCEDURE 
 
The suggested design method for hybrid systems with nonlinear viscous dampers is general and can be 
used for designing new VDBFs or the seismic upgrading of existing steel and reinforced concrete 
(RC) framed structures. A simple procedure based on the Capacity Spectrum Method is used to 
determine the amount of supplemental damping required to satisfy the design objectives.  
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Figure 3.1. ADRS spectra 
 



Depending on the analysed framed structural system (e.g. steel frames, RC frames) a critical design 
objective is established. This can be associated with a specific limit point (LP) on the capacity curve, 
which describes the nonlinear static response of the framed structure.  
The ADRS format is used, where spectral accelerations are plotted against spectral displacements, 
with the period of the analysed frame represented by a radial line (Fajfar 1999). In the case of framed 
structures, the fundamental period of the frame T0 is usually larger than TC, Fig. 3.1., thus the equal 
displacement assumptions can be used and the nonlinear response of the analysed system compared 
against an equivalent elastic response. Different damped demand spectra for each limit state are drawn 
together with the capacity spectrum. This is obtained transforming the coordinate of the nonlinear 
capacity curve expressed in term of base shear and top displacement into spectral accelerations and 
spectral displacements of an equivalent SDOF system. Thus the required equivalent damping can be 
associated with the demand spectrum curve that provides an intersection with the frame period line at 
a spectral displacement Sd,ULS(DLS) close, but smaller than the displacement at the limit point.  
Fig. 3.1 shows a ADRS diagram, where demand curves, capacity spectrum and limit points (LPDLS and 
LPULS) are displayed. According to Eurocode 8 (CEN 2004), two limit states, damage (DLS) and 
ultimate limit state (ULS) are considered with different equivalent damping value . 0 represent the 
inherent damping of the bare frame, while Sd,DLS and Sd,ULS are the equivalent damping coefficients 
for the equipped structure, which are different at DLS and ULS. In fact, as the amount of damping 
supplied by the nonlinear viscous devices depends on the relative displacements at the ends of the 
dampers, Eqn. 2.10, different equivalent damping values are expected at DLS and ULS for the same 
VDBF. According to the design procedure, demand spectra can be drawn considering the relationship 
between spectral acceleration and displacement for a SDOF system: 
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while the fundamental period of the analysed frame can be approximated using the empirical 
expression: 
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where Ct is a coefficient characteristic of the type of structure (e.g. Ct = 0.180 for steel frames with 
semi-rigid joints). An accurate numerical description should be employed to determine the nonlinear 
static response of the frame subjected to a horizontal distribution of lateral forces to collapse. The 
ability of the nonlinear model to represent the evolution of damage in members and joints allows us to 
consider specific design objective at DLS and ULS, which are associated with the limitation of 
structural damage. When using this design strategy for the seismic upgrading of existing structures, the 
frame characteristics are known. Conversely, in the case of design of a new VDBF, member sizes and 
connection details can be derived from the structural design based on the non-seismic loading 
conditions. As mentioned above, when the critical designed objective has been established, the 
equivalent damping coefficient which provides a demand in displacement close, but smaller than the 
displacement capacity at limit point (Fig. 3.1.), can be found. Then the damping coefficient C of the 
nonlinear viscous devices can be determined using Eqn. 2.12 and considering the first vibration mode 
of the frame and the displacement demand Sd,DLS(ULS) = Sd(T0,Sd). Assuming to use devices with the 
same damping constant C and with the same inclination angle j , the damping coefficient can be 

calculated as: 
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with 



 d 0 Sd 1A S T ,                      (2.16) 

 
where 1 is the participation factor for the first mode. 
Finally, the other design objectives must be checked taking into account the spectral displacements at 
the associated limit points. At this stage the spectral displacement demand can be found using Eqns. 
2.2 and 2.12. Now the viscous damping constant C is known, as it has already been calculated for the 
critical design objective (Eqn. 2.15), thus Sd and A can be determined using the iterative procedure 
shown in Fig. 3.2. 
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Figure 3.2. Iterative procedure to calculate displacement demand 
 
The A value is then used to find the spectral displacement demand Sd, DLS (ULS) (Eqn. 2.16), which must 
be compared against the spectral displacement capacity at the specific limit point. If the demand value 
is smaller than the capacity, then the specific performance objective is met, otherwise a higher 
damping coefficient Sd leading to a lower demand value must been chosen and the required damping 
constant C recalculated (Eqn. 2.15). 
 
4. SEISMIC UPGRADING OF A STEEL FRAME 
 
The performance of VDBF has been investigated considering the seismic upgrading of a steel frame 
with semi-rigid joints, which has been designed according to current codes of practice. The proposed 
design strategy is utilized to calculate the required damping coefficient and the damping constant for 
the nonlinear viscous dampers used for improving the behaviour under earthquake loading. An 
accurate numerical model is employed to determine the nonlinear dynamic response of the steel frame 
and the frame equipped with dampers. 
 
4.1. Steel frame with semi-rigid joints 
 
The analysed structure is a three-bay three-storey frame. Column height is 4.0 m at the ground floor 
and 3.5 m at the upper floors, while the span length is 6 m for each beam. The steel frame has been 
designed according to Eurocodes (CEN 2003a, CEN 2003b) for non-seismic loading conditions, 

no yes 



taking into account dead, live, wind, snow loads and imperfections. Thus HEB280 section for columns 
and IPE300 for beams have been determined. The beam-to-column connections are semi-rigid and 
made up of bolted angles which connect web and flanges of the beam to the column flange (Fig. 
1.1.b). In particular, a 100x120x200 mm angle with 12 mm thickness is used for beam web and a 
130x130x150 mm angle with 13 mm thickness for beam flanges, while the bolts are high strength 
M20 10.9 (CEN 2003b). 
 
4.2. Seismic upgrading 
 
The performance of the frame has been checked under earthquake loading, accounting for damage and 
ultimate limit state (CEN 2004) with ag=0.35g and type soil A. It has been found that the interstorey 
drift demand (0.72% drift) at DLS is higher than the limit value suggested by the code (0.5% drift), 
thus the structure requires upgrading. The use of nonlinear viscous dampers to form a VDBF has been 
considered, and the design strategy presented in previous section has been followed to find the amount 
of viscous damping d and the damping coefficient C for the viscous fluid devices, which lead to a 
significant improvement in the seismic performance, thus meeting the design objectives. In particular, 
using = 0.2 (typical value), it has been calculated that d,DLS = 8% is required at DLS. This, for the 
analysed frame (0 = 5.07 rad/sec, 0 = 2%) and for two dampers with 0   at each floor, gives C = 
13.55 kN/(m/s)0.2. According to the design strategy, after determining the number of damper and the 
viscous coefficient C, the maximum displacement A and supplemental damping at ULS can be found 
using the iterative calculation in Fig. 3.2, which, in this case, gives A = 1.31·10-1 [m] and d,ULS = 
6.73%. 
 
4.3. Nonlinear dynamic analyses 
 
Nonlinear dynamic analyses (NDA), with three different artificial ground motions compatible with the 
design elastic spectrum, have been carried out to compare the seismic response of the steel frame 
against the dynamic behavior of the VDBF system. An accurate numerical description has been used 
for modelling plastic damage in steel member and connections. Plastic beams elements provided by 
the finite element code ABAQUS (Hibbit et al. 2001) have employed for beams and columns, while 
nonlinear rotational springs with specific mechanical laws to account for degradation of strength and 
stiffness have been used for beam-to-column connections (Amadio et al. 2010). In particular the 
component method has been considered to calculate strength and stiffness for rotational springs. 
Finally, nonlinear dashpot elements have been used to represent the dynamic behavior of nonlinear 
viscous dampers. 
The results of nonlinear dynamic analyses (NDA) allow us to check the accuracy of the designed 
procedure for VDBF. Table 4.1 reports the maximum top displacements calculated by the numerical 
model in the three time-history analyses (Acc1, Acc2, Acc3, ag=0.35g) and the value obtained using 
the ADRS spectra (Fig. 3.1). The design and numerical values are quite close confirming the 
effectiveness of the proposed approach. 
 
Table 4.1. Top displacement at ULS in [m]. 

 
NDA - Acc1 NDA - Acc2 NDA – Acc3 

Design value 
ADRS diagram 

Steel Frame 1.36·10-1 1.24·10-1 1.17·10-1 1.29·10-1 
VDBF 9.54·10-2 9.82·10-2 8.31·10-2 9.96·10-2 

 
Incremental dynamic analyses (IDA) have been also conducted. Different levels of ground 
accelerations have been considered: ag = 0.05g, 0.15g, 0.25g, 0.35g, 0.45g, where the second value can 
be assumed as the design value at DLS, while the forth acceleration as the reference value at ULS. 
Fig. 4.1. shows some IDA curves comparing the performance of the bare frame against that of the 
VDBF system. A specific ground acceleration has been used for each curve, which represents the 
variation of the base shear against top displacement. It can be observed how the use of dampers leads 
to a significant reduction in displacements and base shear, and how, in the case of VDBF, the results 
for different ground motions are very close.  
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Figure 4.1. IDA for bare frame (a) and VDBF (b) 

 
Figs 4.2,4.3,4.4 display the time history of displacement, velocity and acceleration, which allows the 
performance of the VDBF and the steel frame to be compared. The use of nonlinear viscous dampers 
leads to a significant reduction not only in maximum displacements, which can be obtained also using 
traditional steel bracings (Amadio et al. 2009), but also in maximum velocity and acceleration. 
Moreover the figures show a limited influence of the higher modes contribution in the dynamic 
response of the frame with nonlinear viscous dampers. 
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Figure 4.2. Time history of displacement at top floor for Acc1 with ag = 0.15g and ag = 0.35g for steel frame (a) 

and frame with nonlinear viscous dampers (b) 
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Figure 4.3. Time history of velocity at top floor for Acc1 with ag = 0.15g and ag = 0.35g for steel frame (a) and 

frame with nonlinear viscous dampers (b) 
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Figure 4.4. Time history of acceleration at top floor for Acc1 with ag = 0.15g and ag = 0.35g for steel frame (a) 

and frame with nonlinear viscous dampers (b) 
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Figure 4.5. Time history of Energy for steel frame under Acc1 with ag = 0.15g and ag = 0.35g for steel frame 
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Figure 4.6. Time history of Energy for VDBF under Acc1 with ag = 0.15g and ag = 0.35g for frame with 

nonlinear viscous dampers 
 
Finally, Figs 4.5, 4.6 show the time history of different energy components for the steel frame and the 
hybrid system with viscous dampers, at different levels of ground acceleration. In particular, the total 
energy demand (Etot) is compared against the kinetic energy (Ek), elastic energy (Eel), viscous energy 
(Ev) and plastic energy (Epl). The total energy demand for the two system is very close both at DLS 
(ag=0.15g) and ULS (ag=0.35g), while there is a significant different in the energy dissipation 
mechanism. Plastic energy is the more substantial contribution for the bare frame both at DLS and 
ULS. This points out a considerable plastic damage in the structural system that carries gravitational 
loading, also in the case of frequent seismic events. Conversely, in the frame upgraded with viscous 



dampers, plastic damage is very limited at DLS and plastic deformations are reduced also at ULS. In 
this case, most of the energy supplied by the earthquake is dissipated by the viscous dampers. 
 
5. CONCLUSIONS 
 
In the paper the seismic performance of steel frames with semi-rigid joints equipped with nonlinear 
viscous dampers has been investigated. A practical strategy for designing new coupled systems or the 
seismic upgrading of existing steel frames has been suggested. It is based on the use of the Capacity 
Spectrum Method, where the analysed framed structure is represented by an equivalent SDOF system, 
and damped spectra are used to find the amount of supplemental damping required to satisfy the 
design objectives at different limit states. This approach has been checked using nonlinear dynamic 
analyses. In particular, the seismic response of a steel frame upgraded with nonlinear viscous dampers 
has been analysed. A detailed nonlinear model for steel frame components has been employed to 
describe plastic deformations. The numerical results confirm the accuracy of the proposed design 
procedure and point out the enhanced performance under earthquake loading of the VDBF system, 
which is characterised by reduced displacements, velocities, accelerations and limited plastic damage 
and base shear. 
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