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SUMMARY:  

A simple discrete model is used to treat a problem of dynamic through soil structure to structure interaction via 

an analytical 2-D formulation that is then numerically solved in time domain. The model includes a frequency 

independent rotational spring as a key buildings interaction mechanism. Insight into the influence of the 

geometrical characteristics of the structures and distance between them on the dynamic structure-soil-structure 

interaction effects is examined.   
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1. INTRODUCTION 

 

The study of the dynamic interaction between several structures with consideration of the underlying 

or surrounding soil is receiving some considerable attention in recent years, Menglin et al (2011). 

Although experimental in situ investigations, Kitada et al (1999), Yano et al (2003) and Hans et al 

(2005), provided qualitative evidence of the dynamic interaction effects between adjacent structures, 

the studies of the dynamic structure-soil-structure interaction phenomena have been explored 

analytically and also numerically based either on finite element (FE) or boundary element (BE) 

methods or on coupled FE/BE procedures, for example MacCalden (1969), Luco and Contesse (1973) 

and Wang and Schmid (1992). The structure-soil-structure interaction analysis of several shear walls 

erected on an elastic, homogenous half-space conducted by Wong and Trifunac (1975) showed that the 

scattering, diffraction and interference of waves from and around several foundations with the incident 

SH waves can lead to significant effects if the structure of interest is smaller and lighter than its 

neighbours. The complexity of the multi-structural interaction problem has also been emphasised by 

some recent numerical studies , for example Wirgin and Bard (1996), which showed that the vibration 

of structures radiates diffracted wave fields into the soil with amplitudes than can be important when 

heavy structures rest on stratified soft soils and have the same frequency of vibration as the soil. The 

radiated wave field is energetic enough to be detected up to a distance of 10 times the foundation 

length and the seismic ground motion may thus be contaminated by the complex contributions from all 

the buildings, Guéguen, et al (2002). In spite of their applicability to complex configurations, the 

numerical calculations may nonetheless obscure insight into the problem and preclude parametric 

studies. Therefore, an alternative approach could be based on approximate discrete models. This is 

particularly attractive for analyses of dynamic interaction between large numbers of buildings 

typically found in densely populated cities. Extensive research has produced a large variety of 

approaches for the evaluation of the discrete system constants, Barkan (1962), Lysmer and Richart 

(1966), Richart et al (1970), Gazetas (1991), Wolf and Meek (1993) and Wolf (1994). Among others, 

Mulliken and Karabalis (1998) illustrated that this kind of modelling can be successfully applied not 

only to the evaluation of linear but also non-linear systems of massive adjacent surface foundations 

supported by homogeneous, isotropic, linear elastic half-space. 
 



 

In this paper, a simple discrete model is used to treat a problem of dynamic through soil structure to 

structure interaction via an analytical 2-D formulation that is then numerically solved in time domain. 

Building and the soil are taken to act linearly and elastically and only soils of loose sand have been 

considered. A study done by Alexander et al (2012) has shown that building resting on this type of 

sand would experience the worst effect of the interaction. Two cases of excitation have been 

considered that are an artificial Kanai-Tajimi accelerogram and a horizontal ground motion of 

Westmorland earthquake. The influence of different geometrical characteristics of the structures and 

distance between them on the dynamic coupling interaction effects is then investigated. 

 

 

2. THEORY  
 

For this study a case of two buildings is considered. The discrete model is shown in Fig. 2.1; buildings 

and soil underneath them are coupled by a rotational interaction spring . Each structure-soil system 

is a two degree of freedom (dof) system with one translational dof at the building level (i.e. x1= r1u1  

and  x2= r2u3) relative to the ground translation xg= r1ug and one rotational dof at the foundation level 

(i.e. θ1= u1 and θ2= u2).  All system dofs are non-dimensionalised. m1 and m3 are masses; k1 and k3 are 

stiffnesses of building 1 and 2 respectively. m2r1²  and m2r2² are polar moments of inertia; k2  and k4 are 

rotational stiffnesses of foundation-soil beneath each building and r1, 2 are radii of gyration of soil 

semi-cylinders. Using Lagrangian energy formulation a non-dimensional equation of motion of the 

coupled system is derived.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1. Two buildings discrete model 
 

The scope of this analysis is restricted to a special case, Fig. 2.2, by assuming the following: 

 

i- same loose sand soil profile exists under both buildings, i.e. average soil density ρs is 

identical 1300 kg/m
3
. 

ii- both buildings have an identical square plan area of b 

iii- both buildings have the same average density, ρb based on typical span and floor loadings 

and is taken 600 kg/m
3
 

iv- buildings can be of different heights, h1, 2  

v- buildings are spaced at some arbitrary distance from each other, zb 

vi- volume of soil mass equals 0.35b³ for a square base building of width b which is 

equivalent to a semi-cylinder of radius 0.47b, based on Newmark and Rosenblueth (1971). 
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Figure 2.2. Parametric study  

 

The Euler-Lagrange equation of motion expressed in matrix form is as follows 
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Eqn. 2.1. is the nondimensional equation of motion of the coupled system and the Newtonian dots 

signify derivatives with respect to a time-scale τ =ω1.t where ω1  is the fixed base natural frequency of 

building 1. There are four key parameters in Eqn. 2.1. namely, (i) height ratio ε = h2/h1 (building 2 to 

1); (ii) aspect ratio s = h1/b; (iii) normalised inter-building distance ratio z and (iv) soil class (dense, 

medium or loose). c1 and c2 are soil type coefficients written as c1 = 0.35(ρb /ρs) and c2  = 655(1-µ) 

where µ is Poisson’s ratio . sV is normalised shear wave velocity of the soil. The analysis conducted by 

Alexander et al (2012) showed that an inverse power functional relationship exists between the 

rotational foundations springs k2 and k4 and rotational foundation to foundation interaction spring κ 
with the inter-building spacing z for any foundation geometry b as follows 
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ks  is the soil/foundation rotational spring stiffness in the absence of buildings interaction , Barkan 

(1962). As κ, k2  and k4 are dependent on the same soil properties the coefficients c3 ≈ -1/4 and c4 ≈ 1/2 

are generally independent of soil type.  

 

 

3. TIME DOMAIN ANALYSIS  
 

Introducing orthogonal damping that is based on a Caughey damping model, Clough and P. J (1993) 

and Chopra (2000). This is based on all four eigenvalues of the linear unforced system, Eqn. 2.1.  Each 

mode is taken to be damped at 5% of critical damping: thus, Eqn. 2.1. in its general form becomes 

 

guMu +Cu + Ku = p
 

 

(2.1) 

(2.2) 

(3.1) 

 

 

 

 

 

 

 

  
 



 

The second order ODE system in Eqn. 3.1. is solved as a state space model in time domain using the 

classical Runge-Kutta method with a single integration step and converted to a MATLAB routine. The 

system is first analysed for an artificial input time history then for excitation of ground motion of an 

actual earthquake.  

 

The excitation input in the first case is assumed to take the form of generalized stationary Kanai-

Tajimi model, Kramer (1996), of an eigen frequency ωg = 2π3.8 rad/sec and damping ratio ξg = 0.34 

and corresponds to Alluvium sites, Fig. 3.1. A horizontal component record of the Westmorland 

earthquake (California 1981), Fig. 3.2., of magnitude ML = 5.8 has been obtained from PEER Strong 

Motion Database (2000), for weak soil conditions which correspond to sites of an average shear wave 

velocity of less than 180 /m s . 

 

 
 

Figure 3.1.  Kanai Tajimi artificial accelerogram and elastic acceleration response spectrum (5% damping). 
 

 
 

Figure 3.2. Ground motion time history (horizontal component) and its elastic acceleration response spectrum – 

Westmorland earthquake, PGA=1.95 [m/s²]. 

 

The total sway displacement at the top of buildings can be expressed as r1u1-h1u2=r1v1 and                

r2u3-h2u4=r2v2 where the non-dimensional total sway displacements (sway + rotation) are v1 and v2 for 

buildings 1 and 2 respectively. Based on Newmark and Rosenblueth (1971) r=0.33b, hence 

 
v1= u1-3s u2  and  v2= u3-3sε u4 
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=0.05

(3.2) 



 

In order to target the most adverse response, natural frequency of building 1 ω1  is taken to coincide 

with the elastic response spectrum peak frequency of the Kanai-Tajimi spectrum, ωg = 2π3.8 rad/sec,  

in the first case and of the Westmorland earthquake, ωw = 2π6.48 rad/sec, in the second case.  
 

 

4. DISCUSSION  
 

After Fourier transforming v1 and v2, Fig. 4.1. and Fig. 4.2. present the response power spectra for 

buildings 1 and 2 for Kanai-Tajimi and Westmorland earthquake respectively. This corresponds to a 

specific set of system parameters displayed in the figures; a building of aspect ratio s =3, height ratio ε 

=1.1 (i.e. building 2 is 1.1 times building 1’s height) and the normalised inter-building distance ratio z 

= 0.1 (i.e. the buildings are very close to one another). 

 

 
 

Figure 4.1. Response power spectra for total sway displacements for buildings 1 and 2, due to Kanai-Tajimi 

excitation. 

 

 
 

Figure 4.2. Response power spectra for total sway displacements for buildings 1 and 2 due to Westmorland 

earthquake. 

 

For the aforementioned set of system configurations, it is seen that for both cases of excitation 

building 1 increases its response and building 2 reduces its response. It is possible to integrate the area 

under these curves to obtain the total response power of each building for the coupled and uncoupled 

cases. Then the percentage change in total response power when moving from uncoupled to coupled 
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states can be calculated. For both loading cases respectively, it can be observed that building 1’s total 

response power increases by about 39 % and 47% and building 2’s reduces by almost 22% and 8%. It 

is noted that constructing a second slightly taller building 2 next to an existing building 1 seems to 

cause the earthquake power to be passed from the taller structure to the shorter one, Alexander and 

Schilder (2009) and Gourdon et al (2007). In other words, building 1 behaves like a tuned mass 

damper for building 2. It would be interesting to explore how the response power change varies with 

aspect ratio s, height ratio ε and inter-building spacing z.  

 

Each of Fig. 4.3. and Fig. 4.4. displays a contour plot of spectral power change of building 1. The 

critical zones are reds, i.e. where building 1’s total response power is amplified by the presence of 

building 2. Fig. 4.3. shows that the worst possible building parametric configuration resulted from the 

Kanai-Tajimi loading lies around s = 0.75 and ε =1.25. In this case the second building is 25% taller 

than the first and the maximum power gain is about 51%. Fig. 4.4. repeats the previous analysis for the 

case of Westmorland earthquake. In this case the worst parametric configuration is similarly at ε =1.25 

but at an aspect ratio of s = 3.25 with maximum power gain of about 63.5%. Retrospectively, in Fig. 

4.3. it is seen that for s = 3.25 and ε =1.25 (i.e. parameters that produced the maximum power change 

due to Westmorland), the power change because of coupling is still high, about 42.4%. 

 

 
 

Figure 4.3. Change in power (caused by coupling) vs. aspect and height ratio caused by Kanai-Tajimi. 

 

  
 

Figure 4.4. Change in power (caused by coupling) vs. aspect and height ratio caused by Westmorland. 
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Fig. 4.5. and Fig. 4.6. respectively display the variation of power with height ratio ε and inter-building 

spacing z with fixed aspect ratio s at 3.2.  It is obvious that the worst interaction occurs when the 

building are very closely spaced. At a maximum distance of about 1.7b the worst power change effect 

has reduced to an insignificant value of 5%. 

 

 
 

Figure 4.5. Change in power (caused by coupling) vs. height ratio ε and inter-building spacing z, s=3.25 - Kanai-

Tajimi 

 

 
 

Figure 4.6. Change in power (caused by coupling) vs. height ratio ε and inter-building spacing z, s=3.25 - 

Westmorland. 

 

5. CONCLUSIONS  

 

An analytical formulation using simple discrete model has been used to model the dynamic 2-D 

structure-soil-structure interaction problem and has been treated in time domain. Two cases of 

excitation have been considered. Even though the real earthquake excitation has more rich frequency 

content than the artificial excitation, the dynamic behaviour of interacting buildings is seen to be 

qualitatively comparable.   

 

The analyses have been undertaken for loose soils only. Results showed that constructing a second 

somewhat taller building next to an existing is generally adverse. In this case, construction of the new 

building increases the seismic risk to the existing one while reducing its own seismic risk. It also 

-1
0

-5

-5

00
00

5

5

5

5

1
0

10

10

1
5

15

15

2
0

20

0 0 0

2
5

30
35

4
0

Aspect Ratio s=h
1
/b

H
e
ig

h
t 

R
at

io
  

=
h

2
/h

1

Spectral power change (%) Building 1

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.752.75

-10

-5

0

5

10

15

20

25

30

35

40
-5

0

5

5

5

1
0

1
0

10

1
5

1
5

15

2
0

2
0

20

2
5

25

3
0

30

5

3
5

3
5

4
0

4
5

50
5
5

6
0

Nondimensional inter-building spacing z

H
e
ig

h
t 

R
at

io
  

=
h

2
/h

1

Spectral power change (%) Building 1

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.752.75

0

10

20

30

40

50

60



 

appears that the smaller building can act like a tuned mass damper for the larger building. Tall and thin 

buildings of higher aspect ratios are susceptible to a greater risk. Results also suggest that there is a 

favourable geometric configuration where risk is reduced, for the existing building, by the 

construction of a new contiguous building. Results also indicate that a range of -20% to +60% change 

in spectral power is possible.  
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