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SUMMARY:

One of the most efficient techniques for considgtime unbounded media in a mathematical modeleidabal
non-reflecting boundary conditions (NRBCs). A raslaly recent approach in this context is the oreppsed by
Hagstrom and Warburton (H-W boundary condition)isTapproach is available for scalar wave equafidris
equation governs the hydrodynamic pressure digiobuinside a reservoir and hence, the H-W boundary
condition may be used to solve the correspondinglpms. A well-known case in which one has to deith
the dynamic analysis of unbounded reservoir isddmm-reservoir interaction problem. In this studye H-W
NRBC has been applied to this problem and its haiecnesponse is calculated. By comparing the reswith
the exact solution, the performance and accuradhisfNRBC is examined. The numerical results comfihe
very good behavior of the NRBC in the frequenciesva the fundamental frequency of the reservoinveéier,
below this frequency range, this boundary conditiors not perform very well, especially when iapplied in
close distances from the dam.
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1. INTRODUCTION

Unbounded domains are encountered in a wide raingiegineering problems. In order to analyze this
kind of problems by mathematical modelling, one taautilize special techniques to include the
effects of this unboundedness into the model. Clensig Fig. 1, the common feature in most of these
techniques is setting up a truncation boundI'fy iy the semi-infinite domain and solving the wave
equation in the enclosed dom«&x In order to contain the effects of omitted pDrin the solution of
the problem, one can either perform a pre-analgéithe unbounded domain or simply apply a
transmitting boundary condition on the truncati@utdary. The first approach is based on analyzing
the problem inD, and finding a differential relation, which statése variation of the problem's
solution and its derivatives on boundd'y This relation is then used as the boundary cmmdior
solving the problem ir2. Some of the most famous techniques in this cayegoe DIN maps,
boundary integral methods, thin layer method (Lys&&Vaas (1972)) and absorbing layers; while, in
some of these methods, the analysi:Dos carried out along with the analysisQf in others, it is
necessary to perform these two phases of anabgpsrately.

In another approach, the boundary conditiorl'piis not defined based on a pre-analysis of infinite
domain. The first boundary condition of this tygetlie well-known Sommerfeld BC. This boundary
condition is the radiation condition at infinitypWever, by taking a sufficient distance from the
scatterer, it may be applied on the truncation dawn with an acceptable error. The asymptotic
boundary condition, proposed by Engquist & Majda7a, 79), is another example in this category.
This boundary condition is based on the Pade appegion of dispersion relation. It is also shown
that this boundary condition would result in a wedsed problem. A similar approach which is
proposed by Higdon (1986, 94), is the multidirecéibboundary condition. By applying this boundary
condition onI%, inward plane waves, which are propagating in rdage set of directions, will be
eliminated from the solution of the problem. Thea® be found other boundary conditions, which are



based on infinite products of first order diffei@ahbperators. However, none of these methods were
applied for orders higher than 2 or 3, before tlg 1990s.

Collino (1992) proposed the first implementationasfymptotic boundary condition for higher orders
in finite difference method. In order to improveetistability of the solution, a set of corner
compatibility conditions was also included in teisidy. Givoli and Neta (2003a, b) used a sequence
of auxiliary variables to employ the higher ordefsHigdon NRBC in finite difference and finite
element methods to solve the waveguide problem. Ja@olen et al (2005) also used the same
technique to solve a fully exterior two dimensiopabblem; however, in the absence of any special
corner treatments, some long time instabilitiesengloserved in the solution. In order to solve this
problem, Vacus (2004) proposed a technique to meduset of compatibility equations in the corners
of the medium, which could highly enhance the $tgbof the results. Hagstrom and Warburton
(2004) proposed a new high order boundary conditidrich was based on a modification of Givoli-
Neta auxiliary variable NRBC. Givoli et al. (2008hplemented this boundary condition in finite
element method and performed an analytical compaetween Givoli-Neta (G-N) and Hagstrom-
Warburton (H-W) NRBCs. An important issue about &tve techniques is their inability to absorb
evanescent waves. In order to resolve this issagstrom et al (2008) proposed a modification to the
HW boundary condition by adding an extra set ofilary variables which characterize the
evanescent waves at the truncation boundary.

One of the problems, in which the unbounded mediairavolved, is the dam-reservoir interaction
problem. In this problem, the reservoir may be @ered as a semi-infinite waveguide, and divided
into two domains: near-field and far-field. Whileetnear-field and dam body are modeled by finite
element method, it is necessary to employ an apiateptechnique to take account of the reservoir's
far field. On the other hand, some of the spe@atures of reservoir's boundary conditions, such as
vertical base excitation at the reservoir's botewannot commonly addressed in general studies about
the transmitting boundaries; yet, there may be doseveral techniques for this purpose in the
literature. While, some of these techniques (HalCBopra (1982) and Tsai & Lee (1990)) are based
on global procedures, others are based on localdawy conditions like the ones, proposed by Sharan
(1987) and Weber (1994).

In this paper, the H-W boundary condition has batiized to construct an appropriate boundary
condition for the dam-reservoir interaction probleédince the exact solution of this problem exiats i
the frequency domain, the results of this studyadse presented in the frequency domain. However,
by applying this method in the time domain, no $gecomplexities would arise. Finite element
method is used to discretize the solid and fluichdims. The results of the analyses are presented in
terms of the variation of displacement at dam ceesd total hydrodynamic force, for different
excitation frequencies.
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Figure 1. Schematic view of a 2D dam-reservoir system.

2. GOVERNING EQUAITON OF THE DAM-RESERVOIR SYSTEM

The governing equation of the dam-reservoir syster@ay be established by coupling the
corresponding equations of the solid and fluid dosaThe coupling relation, which is used here,
describes the relationship between dam accelesadaod water hydrodynamic pressures, on the dam
reservoir interface. In order to obtain the dynareigponse of the dam to external actions, one san u
the following equation (Taylor & Zienkiewicz (20Q0)



M¥ + Ci + Kr = —MJa, + BP (2.1)

Where,M, C andK are the dam's mass, damping and stiffness matrcessthe vector of nodal
displacementsa, is the vector of ground acceleration and will peleed on the corresponding DOFs
of the dam by means of matrJc B is the interaction matrix, which integrates theditoglynamic
pressures of the reservoir's water to calculateh@rodynamic forces. In the current study, the
excitation of the system is supposed to be harmamicapplied in the horizontal direction. As a fgsu
the response of the system is also harmonic andbeayritten asr(z) = rexp(iwt). On the other
hand, the damping is assumed as a hysteretic iypeC = (28/w)K; where  is the hysteretic
damping factor. Accordingly, Eqn. (2.1), would yiel

(~*M + (1 + 2if)K) r = —MJa; + B'P (2.2)

It should be mentioned that the superschijpin the acceleration vector refers to the horizagse of

excitation. That isa} = (ay 0)".

For the fluid domain, both velocity potential angdlodynamic pressure may be used as the
independent variable to establish the governingaig. The latter is more common in engineering
applications and has been utilized to describeadlervoir's state in this paper. Considering thiewa
to be an inviscid and compressible fluid, with dmalotational movements, the hydrodynamic

pressures inside the reservoir are governed byddlar wave equation (Fig. 1):
1
V2p(t) — — p(t) =0 inQand D (2.3)
C

wherec is the sonic velocity in water arpddenotes the hydrodynamic pressures. Since thgsasmi
going to be carried in the frequency domain, therbglynamic pressure is supposed to have a
harmonic form, i.e.p(t) = p exp(iwt). Hence, Eqn. (2.3) and its boundary conditionsld/idind the
following form:

w?

V2p+—2p=0 in Q and D (2.4)
c

p =0, on the water surface (2.5)

dyp = —pafg’ —iwgp, atthe reservoir’s bottom (2.6)

p is the mass density of water apds the absorption coefficient of reservoir's batt@lthough, Egn.
(2.4) does not contain any dispersion term, itsndauy conditions are arranged such that, dispersion
occurs in all of the reservoir's modes of vibration

In order to solve Eqn. (2.4) by finite element noethone can employ the weighted residual approach
and apply the boundary conditions of the problermbtiain:

~0’GP +iwgLyP+HP =R; + w’Br—BJa; (2.7)

where,G, Ly and H are characteristic matrices of the fluid domain amay be found elsewhere
(Samii & Lotfi (2012)). WhileB andJ have already been defineR; is obtained by assembling the
element matrices with the following definition:

1
Rf = Nup)ary (2.8)
p Jre

In order to calculate the above integral, we shduidw d, p on the truncation boundary. This is
achieved by formulating the absorbing boundary ¢



3. APPLYING H-W NRBC ON THE UPSTREAM BOUNDARY OF RESERVOIR

H-W boundary condition was proposed as a modificatof Higdon's boundary conditions by
Hagstrom & Warburton (2004), to enhance its efficie This NRBC leads to a set of balanced
symmetrizable systems of equationsI'pnand its reflection coefficient is proved to beahudess than
Higdon boundary condition. H-W radiation conditiof order / may be written as a recursive
sequence of auxiliary variables, as below:

0rp1 = (apdr —cix)p (3.1)
(ajor + cix)pj+1 = (ajo; —cox)pj, jef{l,---,J} (3.2)
$s+1=0. (3.3)

It may be shown that by combining the above refatialong with Eqgn. (2.3), one would obtain the
following boundary relations ol'. The derivation process is explained by Samii &filL(@012):

Ixp = % (aop —é1) (3.4)
— a)zaj (a]z_1 — Dej—1 + aj028§¢j_1 + w?(1 + ajaj_1)(aj +aj_1)¢;
+c*(aj+aj_1)d¢j—w’aj1(@;—Ddjy1+a; 1705941 =0. j€{2,--.J} (35
—2a)2a1(a(2) —Dp+ 2a1628§p+w2(2a0a1 + af + D¢y
+?05p1 — (@] — Do + *9o¢p =0 (3.6)
¢r+1 =0 (3.7)

3.1. Utilizing the absor bing boundary condition in dam-reservoir equations

In order to employ this boundary condition in resérs equation,d,p in Egn. (2.8) may be
substituted with—d, p, which is equal to—iw(app — ¢1)/c from Egn. (3.4). As a result, the
contribution related tI'f in Eqn. (2.7) finds the following form:

iw

RS = -2 f N (dop — ) dT? (3.8)
pec Jry

For H-W boundary condition of order zero, one ¢; = 0, which results in Sommerfeld boundary
condition by choosinag equal to 1. For higher ordeip, may be interpolated similar 3 hence, one
would obtain:

iw
Rf = —?Lf (agP® — ®9) (3.9)

Now Rf may be assembled into (2.7) and combining thdtieglequation with the governing relation
(2.2) of the solid domain would yield:

Sdam —BT 0 ! ~MJa"
%5 s B{7) -0
With the following definitions:
Saam = —0*M + (1 + 2B)K (3.11)
Stes = _CUZG + ia)qLH +H (312)

Obviously, the above system of equations is notpteta. Therefore, an extra set of equations are
required in terms op, ¢1,--- , ¢ which will be produced by discretization of EqB8.5) and Eqn.



(3.6) onIt.

3.2. Discretization of the non-reflecting boundary

In order to utilize the finite element method faiving Eqn. (3.5) and Eqgn. (3.6), one can apply
weighted residual method on these equations. VWiederivation procedure of these equations may

be found elsewhere (Samii & Lotfi (2012)), theindl discretized form are as follows

Ly (—yj®j-1 +8;®; — 7@, 41)

— Dy (a; -1 + 0P +aj_1®j41) =0, jef2,---,J} (3.13)
w?L (—2)/1P + 5@y — Z—z%) —®D; 2a1P + @ + ®5) =0 (3.14)
Where,
Q = i (3.15)
D = ll())l + iwgQq (3.16)

yi =ajlaj_y—=1); & = (1 +ajaj-1)(aj +aj-1);
yj = aj-1(a;> = 1) n; = (aj +aj-1);
o = (2apa; + al + 1); (3.17)

forj e {1,---,J}

In these relationd; is a vector, whose elements are all equal to Zwept the one that corresponds
to the bottom node d; D; may also be obtained by assembling the correspgrelement matrices,
which are defined as below:

1
D¢ = — / Ny NJdIf (3.18)
pJry

Now one should establish a system of equationsdbars€¢3.10), (3.13) and (3.14), and solve it talfin
the response of the relevant fluid-structure system

4. NUMERICAL EXPERIMENTS

The introduced method is employed to analyze ac&ypilam-reservoir system. Since the rigorous
solution of our problem has been calculated infthguency domain, we will also present the analysis
results in the frequency domain; however, the wihaolalysis procedure may be carried out in the time
domain. The mentioned rigorous solution, whichrigppsed by Hall and Chopra (1982), is based on
the hyper-element method. This method treats thgitan dimension of the reservoir analytically and
uses the finite element discretization for the sr@esction of the reservoir.

The general setup of the considered dam-reserystem is illustrated in Fig. 2. The height of the
dam and reservoir is taken as 200 meters in dlefnalysis cases. Dam and reservoir are assumed t
be placed on a rigid foundation, and the systeexdited with horizontal ground motion of frequency
. The material properties of the dam’s concreterasdrvoir’'s water are listed in Table 1.

Table 1. Material properties of the model

Concrete modulus of elasticity 27.5 GPa
Concrete Poisson's ratio 0.2
Unit weight of concrete 24 kN/m3

Pressure wave velocity in water 1440 m/s

Unit weight of water 9.81 kN/m3




4.1. Range of excitation frequency and FE mesh

One of the important aspects of the analysis pureeid its reliability in the frequency range, whis
applied to the real structure. In this study, wé ealculate the response of the system for exoiat
frequencies below 12 Hz.

The employed finite element mesh for dam and resemwonsists of 2D quadratic isoparametric
elements. The size of the elements should be ablsimulate the shape of waves, which are
propagating inside dam and reservoir. Besideshdiulsl also be noticed that, in this study, the
accuracy of higher order NRBCs are going to be @areyh with the semi-analytical exact solutions,
with the same mesh and material properties. Thexe&atisfying the minimums for the mesh size
should make this study perfectly reliable. As ailieshe size of the fluid and solid elements ateen
smaller than 40 m. This will result in a mesh wbthayers of elements along the height of the dam; t
number of elements in-direction is variable with the length of the res®r. Nevertheless, In order to
evaluate the sensitivity of the response to thehnséze, one of the experiments has been carried out
for a model with 20 m mesh size.
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Figure2. (a) Geométry of the model, used in numericalyas®d, and (b) the corresponding FE mesh
for L/H = 2.0.

4.2. Analysisresults

In this section, several analysis results are ptegeto investigate the performance of H-W boundary
condition. The first set of results are producedibing the Sommerfeld boundary condition, which is
known to converge to the exact solution of the f@al when the truncation boundary is located at an
infinitely large distance from the wave sourcedam-reservoir interaction problem, this distance is
often characterized bL/H, which is the length to height ratio of the resérvAs shown in Fig. 3,
for this case, the results are converging to thactesolution; however, even fc./H = 3.0,
Sommerfeld BC exhibits some major instabilitiespur desired frequency range. The horizontal axis
of Fig. 3, shows the excitation frequency of thetegn, which is normalized with respect to the first
natural frequency of the dam with an empty resenidie reflection coefficiento) for all the analysis
cases has been taken equal to 1.0. This reflecbefficient corresponds to a rigid reservoir's bed,
which results irg = 0 in Eqn. (2.6).

Example 1: Now, as the first experiment on H-W liamy condition, we consider a model with
L/H = 1and the reflection coefficient at the reservairésl is taken aoc = 1. By applying horizontal
excitation on the system, the transfer functiothefdam crest acceleration will be plotted foretint
orders of boundary condition. In this case, alltltd a;s in Eqn. (3.2) are taken equal to 1.0. The
results are shown in Fig. 4, along with the exatiton of the problem. By increasing the ordeths
boundary condition, some oscillations can be olexkbefore the first peak of the response. In aimer
show the behavior of the system at this rangegw b of the response is also plotted beside adth f
range graph. This peak corresponds to a frequembgre the whole system is resonated. In our
current problem, this frequency is very close te ttutoff frequency of the reservoir. At this
frequency, which is in fact equal to reservoirssffinatural frequency, the vibrational behavior of
reservoir's water alternates from evanescent waateshich the phase velocity is zero, to propaggtin
waves, where the phase velocity is variable witbitaion frequency. It is observed that the higher
order NRBCs are very effective in absorption ofgamgating waves; however, they do not particularly
enhance the performance of the method below tlefduequency. This issue has been recognized by
Hagstrom et al. (2008), and in later improvememth® H-W NRBC, they have included the effect of



evanescent modes in the analysis of the boundagitomn.
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Figure 3. Horizontal acceleration at the dam crest due tizhotal excitation for models with different
ratios of L/H and applying Sommerfeld BC {y.
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Example 2: As mentioned before, the mesh size efctirrent model may seem to be a matter of
concern. Therefore, we have examined one of theeabases, for a model, in which, each element is
divided into four smaller elements. Hence, the eleinsize in this refined mesh is less than 20 . Fi

5 compares the results of regular and refined nsef&ireorder 5 boundary condition. We have also
included the exact results for both refined andil@gmeshes. As can be observed, the results bf hig
order boundary condition and hyper-element metitidW similar trends for both regular and refined
meshes. Especially, it should be mentioned thatrtbgh size cannot be accounted for the oscillations
around the cutoff frequency. It is also noted tmagsh refinement has affected the response more
noticeably at higher frequencies even for the hygdement method (i.e., our exact solution).

Example 3: In example 1, the effect of dam vibmatieas included in the response of the system. In
order to find a more detailed scope on the perfageaof the boundary condition, we consider the
reservoir to be placed next to a rigid wall. Again,is taken equal to 1.0, which results in no
absorption at the reservoir's bottom. By applyingritontal excitation on this setup, the total
hydrodynamic forceFyae:) Over the wall is calculated. The results havenbesculated for the same
orders and sana;js as the previous example. The corresponding seatdtshown in Fig. 6; the exact
solution of the problem is also plotted alongsifte, comparison purposes. The exact solution of
hydrodynamic pressure distribution along the hemfhthe dam may be calculated by means of the
following relation:

o0
p= Z Bj cos(A;y)exp(k;x) (4.2)
j=1
where,
2j —1 w2 2pay ((~1)/*!
Aj = ; kj=4/A2——; Bj=—-2F% :
A TR it T T T (4.2)

Again, it is worth noticing that, for the currerdundary conditions, none ;s in the above relations
is zero; therefore dispersion occurs in all ofiedes of the reservoir.

In this example, the frequency axis is normalizeth wespect to the first cutoff frequency of the
reservoir (i.e.w}). Since, the results are calculated in the frequelomain, real and imaginary parts
of Fyaer are plotted separately. Below the cutoff frequelFy..r IS @ completely real variable (refer
to Eqgn. (4.1) and Fig. 6); this kind of response&sponds to evanescent waves in the reservoihwhic
are decaying as we move farther from the dam badyt can be observed in Fig. 6, by increasing the
order of NRBC, some oscillatory behaviour occurtlis frequency range. However, in higher



frequencies, where propagating waves are the donpaat of the solution, the response converges to
the exact solution by increasing the order of NRBC.

15 - - - . I - 157 - - - - r T :

01 E E 01
_ 02 — 02
_____ 03 --—-- 03

T T

—©— Lxact (lyper-Element) |

~ Exact (Hyper-Element)
35 H

Horizontal Acceleration at Dam Crest
h ) >

Horizontal Acceleration at Dam Crest
- e e o e

1 ‘ /\ / ‘\
/

.
w/w,
& T T
- 05 05 E

10 Exact (Hyper-Element) —O— Lxact (Hyper-Element)
2 2
835 5
Shd = O
© o)
g =l
3. 3.
&30 A:
K k]
§» S
z 5
) -
g <
20 2
215 af E ;
g =
S Q
N N
10 //N / \ =

5 o

\4
0 L 1 1 1 1

— 010
—&— Lxact (Hyper-Element) |

T
— 010

Exact (Hyper-Element) |

3

2
~.

Horizontal Acceleration at Dam Crest
e @
Horizontal Acceleration at Dam Crest

SN/

0 . . . L L oLl . I . I . I . I 1 I
0 p 3 1 > 0.5 0.6 07 08 0.9 10
w/w, w/w,

Figure 4. Horizontal acceleration at the dam crest due tizbotal excitation for different orders of
H-W boundary conditionL/H = 1.0 anda = 1).

5. CONCLUSIONS

In this paper, the H-W boundary condition is applie the dam-reservoir interaction problem. This

boundary condition is already developed for scalave equation and its performance in the

mentioned problem has been the main point of iatarethis paper. The following conclusions may

be drawn from this study:

« The Sommerfeld boundary condition, which is usuali§ized in the dam-reservoir interaction
problem, can not effectively simulate the radiatidaamping lied in the omitted part of the



reservoir. Even for large amounts L/H ratio, this boundary condition result in oscilhai
responses above the first or second natural frexesnf the reservoir.

* Below the fundamental cutoff frequency of the reser there are no travelling waves included
in the response of the fluid domain. Hence, no @ty energy flux is present and the non-
reflecting boundary condition would not cause aasatble improvement in the solution of the
problem. Therefore, as the order of NRBC increasm®e oscillatory behaviour may be observed
in the response.

«  For frequencies higher than the fundamental nafteguency of the reservoir, the non-reflecting
boundary condition behaves quite well. By incregsta order, the results are converging to the
exact solution and no instability is observed & tAnge. However, increasing the order of the
NRBC would have adverse effects on the responsewbtie cutoff frequency. It should be
mentioned that, the improvements which have beepgsed by Hagstrom el al (2008) seem to
be quite promising to solve this kind of issues.

I T T
HW Order 5

T T T
HW Order 5
©— Regular mesh
10 —&— Fine Mesh
Exact (Hyper-Element) [{
——- Regular mesh

Fine mesh

54
T

aN £\

\

\ / \ /;// \\\E\F/A/‘
| 7 7 = __o-
Ao S 5

( M | 1 1 1 1 = oL L L L 1 L
00 10 20 30 10 50 5 06 07 08 0.9 10
w/w, w/w,

Figure 5. Horizontal acceleration at the dam crest due tizbiotal excitation for order 5 boundary
condition and hyper-element method, by regularrafided meshes./H = 1.0 anda = 1).
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Figure 6. Hydrodynamic forceFy.e.;) on a rigid wall for different orders of H-W boueny condition,
due to horizontal ground motioL/H = 1,«a = 1).



