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SUMMARY:  

This paper is dedicated to the development of a comprehensive framework for seismic vulnerability assessment 

for bridge management system. This framework can provide network level seismic risk assessment after the 

earthquake. In this paper, the system level seismic risk analysis is performed by way of the connectivity analysis.  

The seismic risk correlation between the components is incorporated into the analysis based on the Bayesian 

Network with continuous variables. The results are very helpful for bridge managers and government officials in 

understanding the network status and can assist them in making rapid decisions in near-real time, under post 

earthquake conditions. 
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1. INTRODUCTION 

  

We have already described, in Yue et al. (2010), how the Department of Transportation of 

Autonomous Province of Trento (APT) is addressing the problem of the seismic vulnerability of its 

bridge stock. APT manages more than 1000 bridges and approximately 2400 kilometers of roads, 

through a comprehensive Bridge Management System (BMS). The APT’s BMS includes evaluation of 

seismic vulnerability of each bridge, based on the fragility curve approach, consistent with Hazus 

guidelines (FEMA 2003). In Yue et al. (2010), we learned that the seismic risk in the APT stock is 

moderate. However, the system operation at network level is of concern in a post earthquake situation. 

Approximately 15% of the bridges in the APT stock have a relatively high risk of suffering operational 

problems. It is therefore necessary to understand the network operation after the earthquake. In this 

paper, the connectivity between any two given places within the network is calculated. The 

connectivity reliability of a network states the probability that the traffic can reach the destination 

from the origin. It is very helpful for bridge managers and government officials in understanding the 

network status and can assist them to make rapid decisions in near-real time, under post earthquake 

conditions. However, in the network level calculation, we find that it is important to consider the 

correlations between different bridges. In order to understand the correlation between bridges, in the 

second part of this paper, we proposed a probabilistic framework to estimate the condition state of a 

bridge stock in a post-earthquake situation based on the knowledge of the state of other bridge.  

  

 

2. CONNECTIVITY ANALYSIS IN APT-BMS 

  

2.1. Definition of network connectivity 
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Figure. 2.1 Simple network with two nodes and three bridges 



The connectivity reliability of a network states the probability that the traffic can reach the destination 

from the origin (Liu and Frangopol, 2006). In this paper, it is assumed that the bridge elements are the 

only vulnerable parts of the network, and that the roads between any two bridges will never fail. Fig. 

2.1 is a simple network with two nodes and three bridges. Bridge i, for i = 1, 2, 3, is in the operational 

mode with probability pi, and in the failed mode with probability qi =1- pi. The values of pi (i = 1, 2, 3) 

are 0.7, 0.8, and 0.9 respectively. In this example, we assume that there is no correlation between these 

bridges; they are all independent of each other. The links between the nodes and the bridges are 

assumed to be safe. A bridge mode vector V is used to denote the state mode of the bridges: Vi = 1 if 

bridge i is in failed mode, and 0 if in operational mode.  

 
Table 2.1. all the network states in Fig. 2.1 

Network state Vector V Probability of vector V Cnnectivity 

1 110 0.054 Disconnected 

2 101 0.024 Disconnected 

3 011 0.014 Connected 

4 100 0.216 Connected 

5 001 0.056 Connected 

6 010 0.126 Connected 

7 000 0.504 Connected 

8 111 0.006 Disconnected 

 

Given a specific mode vector, if there is at least one path connecting node 1 and node 2, then we say 

that node 1 and node 2 are connected; otherwise they are disconnected. Table 2.1 gives all the network 

states and the corresponding probability for each network state. Table 2.1 shows that there are five 

network states that are connected. The sum of the probabilities for these five states is 0.916. In this 

case, we say that the connectivity for the network is 0.916. From this example, the connectivity can be 

defined as the sum of the probabilities of the network states that are connected. In this simple 

network, there are only 3 bridges and 2 nodes; therefore it is very easy to check the 

connectivity between two nodes. For a complex network with a large number of nodes, it is 

extremely difficult to check the connectivity between any two nodes; the following gives the 

procedure to solve this problem. Assume that there is a graph with n nodes and m links. To 

check the connectivity between any two nodes:  
1. Rank all the nodes from 1 to n randomly, and assuming a need to check the connectivity 

between node 1 and node n, set node 1 as the start node; 

2. If there is a direct link between node i and the start node, then node i is called the linked node; 

find all the linked nodes, and mark the other nodes as unlinked nodes; 

3. For each of the linked nodes, repeat step 2 until the linked nodes set and the unlinked nodes set 

become unchanged. Finally, if node n is in the linked nodes set, then node 1 and node n are 

connected, otherwise they are unconnected. 

Using this method, the connectivity for a specific network state can be obtained. However, due to the 

exponential effect, it is difficult to enumerate the state space for a network with more than a few nodes. 

For a network with 50 bridges, the number of network states is 2
50

 =1.13 ×10
15

, which is a huge 

number. On the other hand, in many cases, it is not necessary to enumerate all the possible states. In 

some cases, for all the connected states, there are only a finite number of states that account for the 

majority of the probability of being connected, while the probabilities of others states are very low. 

Take the network in Fig. 2.1 for example; network states 3, 4, 5, 6, and 7 are connected.  The sum of 

probabilities of states 4, 6, and 7 is 0.846, which accounts for 92.4% of all the probabilities being in 

connected states. Therefore, in the following we can restrict our attention to the most likely states and 

give bounds on the network performance. In order to enumerate the most likely states, algorithm 

ORDER-II (Lam 1986) is used in the following. Algorithm ORDER-II can generate states in the 

appropriate order, and does not require fixing the number of states beforehand. The algorithm can be 

run until a desired degree of accuracy is obtained, thus optimizing the use of computational resources. 

In the following section, the algorithm ORDER will be implemented in the network of APT-BMS to 

calculate the connectivity between any two nodes. 

 



2.2. Network simulation 

 

There are 983 bridges in the APT stock, located along SP (province owned) roads and SS (state owned) 

roads. The whole APT road network, including all bridges and roads, is simulated as a graph. The key 

phase of network simulation is identifying all the nodes of the graph. The following points are defined 

as nodes: the intersections or endpoints of SP and SS roads. Each node has 3 variables: ID number, 

longitude, latitude. Fig. 2.2 is the simulated graph from Trento to Ala. Trento is the capital city of the 

APT region, while Ala is an important town in the south of the APT, near the high risk seismic zones 

in Northern Italy. There are 40 bridges that have different probabilities of being in operational limit 

state, as represented by the colored dots. SS12 and SP90 are two main roads connecting Trento and 

Ala. The Adige River and A22 highway are between SS12 and SP90. Only the intersection and the 

endpoints of SS and SP roads can be identified as nodes. Based on this definition, there are 16 nodes 

in this graph. 
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Figure. 2.3 Google Earth map of the APT-BMS network 

After identifying all the nodes, the next step is to identify all the links. Not all connections between 

two nodes can be regarded as links; these must be along the SP or SS roads. There are 22 links in Fig. 

2.2. Every link has 6 variables: ID number, start node ID, end node ID, ID of the road forming the link, 

the relative position of the start node on the road, and the relative position of the end node on the road. 

When all the nodes and links are identified, the whole APT network is simulated as a graph in Google 

Earth as shown in Fig. 2.3. The small red points represent the nodes, and the red lines represent the 

links. In total, there are 558 nodes and 740 links in the APT stock. All the bridges are located on the 

links. Now the algorithms can be performed on the APT network.  

 

2.3. Network simulation 

 

After simulating the network, the algorithms ORDER and ORDER-II are used to find m, the most 

probable states of the network. Let’s start with the simple network from Trento to Ala in Fig. 2.2. 

Since there are 40 bridges in this network, there will be 2
40 

= 1.1 × 10
12

 states for this network. For the 

whole network in APT-BMS, there are 984 bridges, and so the number of network states will be 2984, 

which is an enormous number. In order to simplify the computation, all the bridges within one link are 

combined into one bridge, and the probability of this new bridge having operational problems is the 



sum of probabilities of all the bridges having operational problem. It must be noted that here we make 

an approximation. Take an example with two bridges (A and B) on the link, As we know, the 

probability of the link being disconnected is Pfail(link) = Pfail(A) + Pfail(B) - Pfail(AB). If we neglect the 

correlation between bridges A and B, we have Pfail(AB) = Pfail(A) ∙ Pfail(B), so Pfail(link) = Pfail(A) + 

Pfail(B) - Pfail(A) ∙ Pfail(B). Since the values of Pfail(A) and Pfail(B) are very small, their product is 

negligible. Therefore Pfail(link) = Pfail(A) + Pfail(B). The components have been reduced to 17, so the 

total number of network states becomes 2
17 

= 1.3 × 10
5
. 

In this example, the number of component is n = 17, and we want to consider the m most probable 

states for this network. For each network state, we calculate the connectivity of the network. If there is 

at least one path to connect node 1 and node 16, then the connectivity for this state is 1, otherwise 0. 

After considering all the m most probable states, the approximate total connectivity for this network is:  
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 (2.2) 

 

where Pi is the probability of the i-th network state, and Ci is the connectivity for the i-th 

network state. Ci = 1, if there is at least one path from node 1 to node 16; Ci = 0, if not. 

Obviously,  
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where C1 is the connectivity when all the components are in operational mode, and C2

n
 is the 

connectivity when all the components are in failure mode. So C1 = 1, and C2
n
 = 0. If we consider the m 

most probable states, we have: 
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From Eqn. 2.3, we have: 
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Since C1 = 1, and C2
n
 = 0, Eqn. 2.5 becomes 
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Substituting Eqn. 2.6 into Eqn. 2.4, we get: 
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Table 2.2 gives the connectivity of the network when considering different m values. When the 10 

most probable states are considered, the range becomes [0.99448, 0.99869]. As the value of m 

increases, the upper and lower bounds of C converge quickly. From this example, we can say that the 

connectivity for this network is 0.99448. After performing the algorithm on the network from Trento 

to Ala, we want to consider the connectivity of the whole network in APT-BMS. Lavazè Pass and 

Riccomassimo are two remote places in Trentino Province located at the north and south path of the 



APT region as shown in Fig. 2.3, respectively. Given the start node as Riccomassimo and the end node 

as Lavazè Pass, the connectivity, using the algorithm ORDER-II, is analysed below. 

Table 2.2. Expected connectivity of between Trento to Ala given different m values 

Number of states (m) 


m

i

iP
0

 



m

i

ii PC
0

 



m

i

i

m

i

ii PPC
00

1  

10 0.9958 0.9945 0.9987 

100 0.9987 0.9945 0.9958 

1000 0.9998 0.9945 0.9946 

5000 0.9999 0.9945 0.9946 

10000 0.9999 0.9945 0.9945 

 
Table 2.3 Connectivity between Passo Lavaze and Riccomassimo for different m for return period of 475 years 

Number of states (m) 


m

i

iP
0

 
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
m

i

ii PC
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 



m

i

i

m

i

ii PPC
00

1  

10 0.5666 0.5666 1 

10
2
 0.7394 0.7313 0.9919 

10
3
 0.7899 0.7313 0.9414 

10
4
 0.7952 0.7313 0.9361 

10
5
 0.7978 0.7313 0.9334 

10
6
 0.7997 0.7313 0.9316 

 

From Table 2.3, we can see that the 100 most probable states account for 73.9% of the whole states. 

After that, the sum of the probabilities for the m most probable states increases very slowly. However, 

the approximate connectivity remains the same after m = 100. Therefore, it can be concluded that after 

the most 100 probable states, the network is disconnected between the Lavazè Pass node and the 

Riccomassimo node. From Table 2.3, we can conclude that the connectivity between the Lavazè Pass 

node and the Riccomassimo node is between 0.73128 and 0.93163. 

 

In all the previous calculation, we ignore the correlation between different bridges; we know that this 

is not reasonable in reality. In order to address this problem, here we adopt a post earthquake 

assessment system, based on the framework proposed by Bensi et al. (2011) which in general allows 

an update of the seismic failure probability of bridges after observing some evidence. In the following, 

we apply a similar framework to the so called ‘twin bridges’ problem based on Bayesian Network with 

continuous variables. A Bayesian Network (BN) is a directed acyclic graph (traditionally abbreviated 

DAG) that consists of a set of nodes and a set of directed edges (Jensen and Nielsen 2007). The nodes 

represent variables and the edges represent condition relationships between the variables. The BN 

originates from the field of artificial intelligence and combines graph and probability theories. It is a 

useful tool that helps perform uncertainty analysis in complex systems. Due to their generality, BNs 

have been widely used in many areas in the last two decades: for an extensive explanation of BN, see 

Jensen and Nielsen (2007). Here, by ‘twin bridges’ we mean two bridges with similar characteristics 

as to type, material and construction year, that therefore are expected to respond similarly to an 

earthquake. The basic idea is that when an earthquake occurs, the limit state of one bridge is detected 

or the information on earthquake magnitude is obtained, the distribution of other unobserved variables 

such as the probability of another bridge being in the same damage state can be updated.  

  

 

3. CORRELATION ANALYSIS 

  

The proposed framework includes three main parts: the demand model, the capacity model, and the 

fragility function which correlates the demand and the capacity. In seismic risk analysis, it is common 

to assume a lognormal distribution for component capacities (C) and component demands (D). If we 

assume that: C  lnN (C, C
2
); D  lnN (D, D

2
), then the probability of failure is: 
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where is the standard normal cumulative distribution function.  
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Figure. 3.1 The conceptual BN that contains the three main parts in the framework 

 

Fig. 3.1 is the conceptual BN representing the relationship between demand and capacity. g is the 

intermediate variable that is related to the probability of failure, g = ln(D/C). In order to facilitate the 

calculation, all the variables follow a normal distribution or lognormal distribution. In this simple BN, 

obviously we have g  N (g, g
2
). The demand is calculated using an attenuation function depending 

on the local site conditions. The capacity is calculated based on some empirical or analytical models, 

depending on the characteristics of the bridges. Normally, the capacity model is defined with respect 

to several damage states. In this paper, we only consider the collapse limit state.  

 

3.1. Demand model 

 

As suggested by many researchers (Abrahamson and Silva 1997; Park et al. 2007; Sokolovet et al. 

2010), the ground motion parameter Yi,j is represented by 

 

, , ,ln ( , , )i j i i i j i i jY f e p s η ε                     (3.2) 

 

where Yi,j is the ground motion parameter at site j during earthquake i, Peak Ground Acceleration 

(PGA), response Spectral Acceleration (SA), Peak Ground Velocity (PGV), or Peak Ground 

Displacement (PGD). In this research, we only consider the parameter PGA; f is the logarithm of the 

mean value of ground motion parameter that is calculated through the attenuation equation. It is a 

function of earthquake source (ei), propagation path (pi,j), and local site condition (si,j). The random 

variable i is the inter-event variability that follows normal distribution. It is common to all sites 

during a same earthquake i. The random variable i,j is the intra-event variability that also follows 

normal distribution. For the same earthquake i, the intra-event variables at two sites are correlated. 

Both inter-event variability i and intra-event variability i,j are aleatory uncertainties that describe the 

variability. The inter-event error describes the variability between the different earthquakes, and the 

intra-event error captures the variability between different sites given the same earthquake event.  

 

3.2. Hazus model 

 

The Hazus model is a rapid approach seeking to establish dependable fragility curves (Mander 1999). 

In contrast to other methods that have been used in the past, such as empirical fragility curves or 

analytical fragility curves that require much previous damage data or extensive computation, only 

limited information is needed for this model. The probability of being in or exceeding a damage 

state in Hazus is modeled as: 

1
[ ( )] Φ[ ln( )]

( )
=f i

g i

PGA
P PGA

β a
     1,2,3,4i =                    (3.3) 

where PGA is the Peak Ground Acceleration, related to the demand on the bridge; is the standard 



normal cumulative distribution function; (ag)i is the median spectral acceleration that causes the i
th
 

limit state, related with the capacity of the bridge. There are four damage states which are (Operational 

limit state) OLS, (Damage control limit state) DLS, (Life safety limit state) LLS, and (Collapse limit 

state) CLS. The four limit states are defined based on Hazus suggestions. In this paper, we only 

consider the CLS; is the normalized composite log-normal standard deviation which takes account 

of uncertainty and randomness for both capacity and demand. In Eqn. 3.3, the only unknown 

parameter is (ag)i, which is calculated using a capacity-spectrum approach. For the detail of calculating 

(ag)i, see Yue et al. (2010): 
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where Cc is the capacity; is the maximum displacement response; S is a coefficient depending on 

the soil type; is the damping correction factor with a reference value of for 5% viscous damping; 

F0 is the spectral amplification factor; TC is the upper limit of the period of the constant spectral 

acceleration branch; K3D is a factor accounting for the 3D arching action when displacements are 

sufficiently large, but omitted in Eqn 3.4a because the seismic displacements are small (Basoz and 

Mander 1999). For the CLS, the value in Eqn. 3.4b is normally larger than that in Eqn. 3.4a, so in this 

paper we only consider the required spectral acceleration obtained through Eqn. 3.4b. In Eqn. 3.4b, the 

only parameter to be calculated is the normalized capacity CC. Based on Dutta and Mander (1998), as 

for single span bridges or bridges seated on weak bearings with strong piers, the capacity is assumed 

to arise from sliding only (Basoz and Mander 1999). In this case, the capacity is given as: Cc =t. 

where t is the coefficient of sliding friction of the bearings in the transverse direction. This is assumed 

to follow lognormal distribution. The normalized base shear capacity of a standard bridge can be 

expressed as: 

 

c Q p

D
C λ k

H
    (3.5) 

  

where Q is defined as a strength reduction factor that occurs due to cyclic loading; D, H are column 

diameter and column height; kp is a factor related to the reinforced concrete strength of the column kp 

= j (1+0.64t fy / (fc), where is a fixity factor taken as 1 for multi-column bends and 0.5 for 

single column cantilever action; j is an internal lever arm coefficient;t is the volumetric ratio of 

longitudinal reinforcement;  is the average dead load axial stress ratio in the column; fy is yield stress 

of the longitudinal reinforcement and fc is the strength of the concrete. In order to facilitate 

computation, kp is better defined as the product of several parameters. Here we assume that 

  

/c Q p y c

D
C λ k α f f

H
      (3.6) 

 

where  is a factor related with , j, t, , D, H, fy, and fc. 

3.3 BN framework for twin bridges 

 

After introducing the three basic components in the framework, we consider the graphs of the BN 

framework. As we have two kinds of capacity model, we will provide two BN frameworks here, see 

Fig. 3.2. When the capacity of the bridge is assumed to arise from bearings, we call this kind of bridge 

Type 1. When the capacity of the bridge is assumed to arise from piers, we call this bridge Type 2. It 

should be noted that here we fix the failure type of the bridge for computation simplicity. In reality, we 

do not know the failure type before calculating the capacity. There are three parts in this framework: 



the demand model, the capacity model and the intersection between the demand and the capacity:  

1. In the demand model, S is a parameter conceptually related to seismic demand at the site where 

the bridge is located: S = log D = log (PGA). M is the earthquake magnitude; is the inter-error 

term for the demand and is the same value for all the sites in one earthquake.  

2. From the capacity model, we have: lnC = ln(ec∙eg) = ln(ec∙k∙CC) = ln ec + ln k + ln CC  where Ec = 

ln ec, ec is the uncertainty term as defined and CC is the resistant strength. When the bridge belongs 

to Type 1: ln CC = ln t = R. t is the coefficient of the sliding friction of the bearings in the 

transverse direction. When the bridge belongs to Type 2: ln CC  = ln fy fc  = ln ln fy ln fc . 
where Fy = ln fy, Fc = ln fc, , fy and fc are defined as before.  

3. g is the intermediate parameter related to the reliability of the bridge. From Equation 11 and 21, 

we have C = eckCC 
0.5

. When the bridge is type 1: g = ln(D/C) = 2.3 S Ecln k R. When 

the bridge is type 2: g = ln(D/C) = 2.3 S Ecln k ln Fy Fc. Given the 

distribution parameters (g, g
2
) of g, the probability of failure for the bridge is g / g. 

 

The two bridges are correlated through the global variables: M, , and C. Since there are two bridges 

in Fig. 3.2, the intra-error terms should be considered with regard to the two sites where the two 

bridges are located. Both Za and Zb follow normal distribution. In order to consider this correlation in 

BN, two parents, U1 and U2 , are used as the sources of Za and Zb. This idea is adopted from Bensi et. 

al. (2011).  
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Figure. 3.2 Bayesian Network for two bridges (a) type 1, (b) type 2. 

 

3.4 Case study 

 

The SP135 Bridge on the River Fersina-Canezza (A) and the SP31 Bridge on the River Avisio 

(B) are ‘twin’ bridges in APT-BMS. Both are 3 span pre-stressed concrete bridges with wall 

piers, non-monolithic abutments, and both were built in 1967. The lengths of the two bridges 

are 58.3m and 57.5m respectively. In Fig. 3.3 and Fig. 3.4 we can see overviews and cross 

sections of these structures. We assume that an earthquake with a magnitude of 7 has 

happened. The sources to site distances for the two bridges are 15km and 10 km, and the 

distance between the two sites is 10km. The capacity variable t is assumed to follow: R = ln 

t  N (ln0.85, 0.1
2
). Since the two bridges both have wall piers, they belong to the bridge 

Type 1 category. According to Basöz and Mander (1999), the capacities are assumed to arise 

from the sliding of bearings only. Table 3.1 gives the other parameters.  
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Figure. 3.3 SP135 Bridge on River Fersina-Canezza (a) overview (b) Plan view, elevation and cross-section  

(a)        (b)       

Figure. 3.4 SP31 Bridge on River Avisio (a) overview (b) Plan view, elevation and cross-section of the deck 

 
Table 3.1. The parameters for calculating median spectral acceleration 

 S  F0 m K3D TC (S) 

A 1 0.6325 2.6848 0.3 1.21 0.3335 

B 1 0.6325 2.6157 0.3 1.21 0.3629 

 
Table 3.2. Results after initialization 

Parameters  Mean value Variance 

Sa = log(PGAa) -0.491 1.067 
Sb= log(PGAa) -0.302 1.067 
ga -2.040 5.662 
gb -1.605 5.662 

 
Table 3.3. Results given the evidence 

Parameters  Mean value Variance 

Sa = log(PGAa) -0.162 0.596 

Sb= log(PGAa) 1.004 0.003 

ga -1.278 3.169 

 

Having defined the relationship between these variables, we can use the computation scheme in 

Lauritzen and Jensen (2001) to calculate the prior distribution for Sa, Sb, ga and gb. Table 3.2 gives the 

results. Given the distributions of Sa and Sb, the median value of PGA at bridges A and B can be 

calculated as 0.6118g and 0.739g; The probabilities of bridges A and B collapsing are 19.57% and 

24.99%. 

 

After the earthquake, the on-site sensor observes that bridge B has collapsed. We can enter this 

evidence into the BN based on the computation scheme in Lauritzen and Jensen (2001) and get the 

posterior of other variables given in Table 3. From Table 2 and Table 3, we can see that the expected 

median PGA values on the two bridges are also increased from 0.6118g to 0.8509g for bridge A, and 

from 0.7390g to 2.7284g for bridge B. The increase in PGA value at site B is much larger than the 

increase at site A; this can be explained by the large uncertainties in the attenuation equation. In the 

meantime, the expectation for the sliding coefficient t is reduced from 0.85 to 0.84. The failure of 

bridge B shows that the capacity of the bridge is less than expected. The probability of bridge A 

collapsing is increased from 19.57% to 23.64%. 



4. CONCLUSIONS  

  

This paper proposes a framework for seismic vulnerability assessment for bridge management system.  

At the first part, the connectivity between any two places is calculated using network state enumerate 

algorithm ORDER-II. The results are very helpful for bridge managers and government officials in 

understanding the network status, and can assist them to make rapid decisions in near-real time, under 

post earthquake conditions. At the second part, the seismic risk correlation between the components is 

analysed based on the Bayesian Network with continuous various. The framework can predict the 

seismic risk for an individual bridge before the earthquake and update the risk after the earthquake 

when given some evidences on other bridges. This can be incorporated into the Decision-Support 

System (DSS) for near-real time emergency response, which is also the future direction of this paper.  
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