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SUMMARY:

This article proposes a step-by-step proceduresdban the Strut-and-Tie Model, for the design of Ryirder
bridge decks subjected to in-plane seismic actions.

The procedure starts from a linear elastic anabsisends by using the Load Path Method. The addaiesults,
as shown in the article, can be validated by usingutionary optimization procedures.

Moreover, in this work, the application of the pospd approach to a typical girder bridge is showme
influence on the model of geometry of bridge deskweell as of the layout of girders and cross-be#ns
investigated.
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1. INTRODUCTION

The Strut-and-Tie Model (STM), conceived by Ritt#899) on the basis of the construction method

by F. Hennebique as a simple representation oinforeed concrete member subjected to shear and

bending, was developed by Mérsch. In the twentbethitury, several studies were carried out on the

STM and the results constitute the fundamentatoofe prescriptions in many international codes.

Schlaich et al. (1987) proposed a global approacthe structural design by means of STM. The

Strut-and-Tie Model implies that the structure esidned according to the lower bound theorem of

plasticity (Schlaich et al., 1987). Since conciatews for only limited plastic deformations, th&@

has to be chosen in a way that the deformatiort ismot exceeded at any point within the structure

before the assumed state of stress is reachee iesh of the structure. In absence of either neali

analyses or specific test evidence for the caserustddy, this ductility requirement can be consde

as fulfilled by adapting each element of the mdddboth the direction and size of the internal ésrc

as they would come from the theory of elasticityg(echlaich et al., 1987; FIP, 1999; CEN, 2004,

ACI, 2008).

It is often not necessary to have a deep knowleddbe Strut-and-Tie Model to find the truss that

best fits the regions under study. This is also wuthe fact that often it is possible to adaptlwel

known pre-solved examples to the case being ardhlyse

In non-standard cases the development of the ‘aptihtruss model may require not only an expert

designer but it could also be extremely time conegnihis is the reason why many procedures (e.g.,

the Load Path Method, optimization criteria), thah at finding the most ‘accurate’ solution witleth

minimum ‘effort’, have been proposed in the last fdecades.

In this article, a procedure, based on the StrdtEe Model, for the design of R.C. girder bridge

decks subjected to in-plane seismic actions isqzegp.

The procedure is based on the following steps:

. Step 1: linear elastic analysis;

. Step 2: from the similarity with standard and weibwn examples, definition of a tentative
STM in which applied loads are substituted by feinploads;

. Step 3: updating of the tentative STM by applicatod distributed loads and comparison with



cases which have been solved in the availableties;
. Step 4: updating of the obtained STM by comparisith principal stress lines resulting from a
linear elastic analysis;
. Step 5: updating of the obtained STM by using tbed_Path Method;
. Step 6 (optional): validation of the obtained STM kising evolutionary optimization
procedures.
In this article, as a first application, the propadprocedure is used for a single span deck cordpaise
a 0.25 m thick slab with girders and cross-bearos.tite sake of simplicity, but without any loss of
generality, girders and cross-beams have a red@ngross section. The slab is characterised by a
characteristic compressive cylinder strength of toacretef, = 35 MPa, a secant modulus of
elasticity E., =34 GPa and a Poisson’s ratie- 0.1. The beams are characterised by a chastateri
compressive cylinder strength of the concifgtes 45 MPa, a secant modulus of elastidity, = 36
GPa and a Poisson’s raiie= 0.1. The following cases have been analysed(Rid, 1.2):
. 2TBA 30.75 mlong, 13.25 m wide, 9 girders, 2 crossrre
. 5TBA 30.75 mlong, 13.25 m wide, 9 girders, 5 croszre
. 2TBB 30.75 mlong, 10.25 m wide, 7 girders, 2 croszre
. 5TBR 30.75 m long, 10.25 m wide, 7 girders, 5 crossne
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Figure 1.1. Plan view of the reference bridge decks (unit: m)
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Figure 1.2. Cross section of the reference bridge decks (mjit:

Such typology and dimensions represent the mostspittad type within the Italian territory for both
existing and new bridges. Even though bridge dewuits a span of approximately 30 m have, in
general, at least three cross-beams, in this attie cases of 2 and 5 cross-beams have beendstadie
immediately highlight the influence of the numbadalistribution of cross-beams on the behaviour of
bridge decks subjected to horizontal actions. Meeeotwo different widths have been considered in
order to verify the tendency of the deck to beHaeea horizontal beam for higher span/width ratios
The following assumptions have been made:

. the peak ground acceleration is 0.2g (moderatensety);



. the vibration periods of the bridges correspondh® 'plateau’ of the acceleration response
spectrum, hence the seismic elastic design actieleied can be assumed as equal tdR.2g
= 0.5¢;

. the behaviour factor ig = 3.5;

. the overstrength factor jg = 1.3.

Taking into account that, for the analysed casestdtal permanent load in the seismic combindton

w = 18-19 kPa, the seismic horizontal load on thekdeay Oy, W / q = 3.34-3.52 kPa. Hence the

bridge decks have been considered as subjecte8.5ok#a static transversal load applied to thie. sla

The following boundary condition8C, hereafter) have been assumed:

. BC1 the bottom intersections between girders anddéegghragms are vertically fixed;

. BC2 the bottom intersections between girders andlefteend diaphragm are fixed in the
longitudinal direction;

. BC3 the bottom intersections between the end diaphsaand the central girder are fixed in the
transversal direction.

2. STM FROM STANDARD EXAMPLESAND LINEAR ELASTIC STRESSDISTRIBUTION

The first step consists in determining the boundarges by a linear elastic analysis. In the cases
under study the finite element code ABAQUS 6.7-FE/Afiaqus, 2007) has been used. The domain has
been subdivided into a regular mesh (0.25 m x 51250.25 m size) using the linear hexahedron (type
C3D9§ finite element (Figs. 2.1 and 2.2). The uniforpplked load has been transformed into many

point loads (Figs. 2.1 and 2.2), in order to besexiant with the analysis performed using the BESO

method and described as follows.

Figure2.1. Analysis5TBA plan (left) and axonometric (right) view of thaife element model

Figure 2.2. Analysis5TBB plan (left) and axonometric (right) view of thaife element model

Since the bottom intersections between girderstiaadeft end diaphragm are fixed in the longitutlina
direction (sedBC2), the behaviour of the slab in the horizontal pléuas to be intermediate between a
simply supported beam and one totally fixed onléifteside and simply supported on the right side.
The elastic finite element analysis results hiditlithat due principally to the transversal/torsiona
flexibility of the diaphragm beams, the behaviodrtloe slab is very similar to that of a simply
supported beam (see, for instance, the deformefigcoation of2TBAand2TBBin Figure 2.3). Such
findings appear to be also confirmed by the stiittilarity between the left and right side reactiam
the transversal direction (Table 2.1). This sinityaallows for the assumption of perfectly symmetri
behaviour of the slab with respect to its transalerentre line.

The simplest way to define a Strut-and-Tie Modeldaiven geometry and load condition is to try to
make reference to standard, well-known examplesthiecase under study, the case of a deep beam



with distributed loads could be taken as reference.

It could be very useful to first solve the casenimich distributed loads are substituted by few poin
loads (step 2 of the proposed procedure). Thankhisoassumption, the STM can be obtained by
applying the similarity to the solution of a beanthadapped ends (compare Figures 2.4 and 2.5). The
model corresponding to the case with a distriblded (i.e. step 3 of the proposed procedure) can be
found by considering that the boundary part of gla is similar to the case of Figure 2.5 and the
middle part of the slab can be analysed as a degp bwith loads only on the extrados by
‘suspending’ the total distributed load (Fig. 2.6).

Figure 2.3. Plan view of the deformed configuration2FBA (left) and2TBB

Table 2.1. Transversal reactions evaluated by using a linkstic finite element analysis

Analysis Left side transversal reaction (kN) Right side transversal reaction (kN)
2TBA 728 700
5TBA 731 696
2TBB 560 532
5TBB 563 528
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Figure2.4. STM of a beam with dapped ends Figure 2.5. STM of the bridge slab obtained by the
according to Schlaich et al. (1987) analogy with the case in Figure 2.4

The STM sketched in Figure 2.6 is valid for alltbé four cases under study. In fact, taking account
only of the analogy with well-known examples, itvsry difficult to analyse the influence of the
differences between the four cases on the morphadbghe STM. Moreover, the assumption of a
morphology which is based only on the superimpasitf standard examples, cannot guarantee the
fulfilment of the ductility check. It follows thatn the absence of either nonlinear analyses arifégpe
test evidence for the case under study, both saindgties of the model have to be changed according
to the direction and size of the internal forcesuling from a linear elastic analysis (i.e. stegf4he
proposed procedure).

It is worth noting that, regarding the design afsgc resistant bridges, modern technical standards
require that the entire structure should be desigmsuch a way that under the seismic action gif hi
reference return period (i.e. the one associatdid the ultimate limit state) energy dissipation o
occur by flexural yielding of specific sectionse(ithe formation of plastic hinges) in piers andipr

the activation of specific damping systems. Theld®wi deck should in general be designed to avoid
damage, other than locally to secondary components.

These considerations imply that even under seigietion of high reference return period the bridge
deck should remain within the elastic range. Thipraach should also be taken into account when
vulnerability evaluation of existing bridges shovespacity deficits that require retrofitting
interventions (Mezzina et al., 2012).

In the analysed cases, it can be considered thatdbk remains within the elastic range. In factne



in the worst condition (i.2TBA), the slab does not suffer any cracking due tcs#igmic action since
the maximum principal tensile stress is equal 81 IMPa, lower than the characteristic axial tensile
strength of concrete (i.ky = 2.2 MPa according to CEN, 2004). Even thougls tifiservation is
sufficient to justify that the deck remains withime elastic range, another consideration needgto b
made. In all the analysed cases, the above mentjgeek values of principal tensile stress are mch
in the area where the point loads have been appliedthese peak values are only due to the
transformation of the uniform load into point loa¢tence it is plausible not to take account of ¢hes
peak values and consequently, in the analysed ,cdmeshaximum values of the tensile stress to be
considered is equal to 0.50 - 0.62 MPa, signifigdotver thanf.

The elastic finite element analysis highlights ttiee STM in Figure 2.6 is not consistent with the
principal stress lines . This is mainly due to fbowing aspects. Firstly the STM shown in Figure
2.6 is based on the assumption of cracked concsetmndly the central part of the slab has 45°
inclined stress lines. Thus the morphology of thé&iShat best fits the elastic finite element anidys
could be the one shown in Figure 2.7.

Figure 2.6. STM of the bridge slab obtained by the Figure 2.7. STM of the bridge slab obtained by linear
solution in Figure 2.5 and by the analogy with ale elastic analysis
beam with loads on the extrados

There are at least two significant differences leetwthe two models (compare Figures 2.6 and 2.7).
The first difference is on the safe side becauseattoption of the model of Figure 2.6 implies the
assumption of a constant tensile action in thedieprd. The second difference regards the ‘web’
tensile action; in fact in the model of Figure thére are only transversal tensile actions whilthan
one of Figure 2.7 these are inclined in the plahthe slab. This means that according to the latter
model either diagonal distributed reinforcement wansversal and longitudinal distributed
reinforcement should be provided in the slab.

Therefore, it is worth noting that from the anadysf the elastic solutions, the geometry of thedmi
slab as well as the distribution of longitudinatidransversal beams do not seem to influence,yo an
great degree, the STM.

3.STM FROM LOAD PATH METHOD

Born as a method to design Strut-and-Tie Modeldléich et al.,, 1987) in reinforced concrete
structures, the Load Path Method (whose basic iptex are widely illustrated by Palmisano et al.,
2002; Palmisano et al., 2003; Palmisano, 2005; Bahmo et al., 2005; Vitone et al., 2006; Palmisano
et al., 2007; Palmisano et al., 2008) is a clear effective tool of investigation and judgementisit
not only a numerical but also a geometrical mettiat predicts calculation results disclosing the
shape aspects from which it is possible to recegthis real structural behaviour.

The Load Path Method (LPM) is based on the respleetuilibrium and consistency. Among infinite
paths in equilibrium, loads have to choose theinmnehich their vectors invest the minimum quantity
of strain energy, that is the only one consistedtia equilibrium.

The total invested strain energy is

1
D —E\J;csdv (3.1)

whereV is the integration domaimrande are the stress and the strain vector respectively.



Along a generic path (polygonal in this model), teculus of the invested strain enerd) (s
simplified in the summation of the terms which egfative to each side of the truss:

D =ZDi (3.2)

wherei is the generic side of the load path.

For linearly elastic materials, the elementaryistesmergyD; can be expressed, for some typical cases,
by means of the relations reported in Figure 3.4.idamediate consequence is that loads cannot
follow a path which is orthogonal to the directiohthe travelling load because it would imply a
vector of infinite magnitude and a consequent itdimvested strain energy.

In general, the application of the LPM consistéinding the ‘optimum’ path, i.e. the only one, angon
different equilibrated load paths, to which the ésitvvalue of the total strain energy corresponds.
Figure 3.1 clearly shows that the total strain gnatepends fundamentally on the length and on the
stress intensity of the paths. It follows that tbptimum’ Load Path is characterised by the right
balance between the length of all the paths (incfythose of the thrusts) and the stress level.

Di = éTiL:Esi

€2, 1 C?L, [ A ]

I
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C;, T compression and tension forces respectively;

Aci, AJ”, AC;(Z): strut transversal area;

E., Es: Young modulus of concrete and steel respectively;
L;: strut or tie length;

&si. reinforcement mean strain.

Figure 3.1. Elastic strain energy in some typical cases otstand ties

In the STM obtained in the previous paragraph drave in Figure 2.7, the paths of the loads from

the application point to the support are signifibatong. This is the immediate consequence of the

assumption that all the loads have to reach thddngitudinal chords as in the case of a beam.

Shorter paths can be obtained if the so-called-bettaviour (see Palmisano et al., 2005; Palmiséno e

al., 2008) is activated. Taking into account wisatientioned by Mezzina et al. (2012) about the-arch

behaviour and considering that the ‘optimum’ LoadhFs the one associated with the lowest value of

the total strain energy, the following considemasi@an be made for the case under study:

. the proximity of the application point of the loam the support encourages the arch-shaped
path;

. the increase of the stiffness of the compressingitadinal chord encourages the beam-shaped
path;

. the increase of the stiffness of the ‘web’ tensitées encourages the beam-shaped path.

In the examined cases, loads are very close tsupport so an arch-shaped path has to be activated

(step 5 of the proposed procedure). In particwdansidering the antisymmetry with respect to the

central girder, two main arch-shaped paths canrberd (Fig. 3.2); loads on the central girder go

towards the arch-shaped paths with 45° inclinethpéhccording to the results of the linear elastic

finite element analyses). Even though the loads theaouter girders are actually in the width of th

arch-shaped paths, in the wire frame model of EduR, transversal paths towards the arch-shaped



paths have been assumed. It is worth noting thatsimpe of the arches can be drawn from
equilibrium conditions simply assuming the positioh the crowns (see Palmisano et al., 2005;
Palmisano et al., 2008). According to the LPM, asisg the configuration shown in Figure 3.2, and
by modifying the shape of the arches (i.e. chandhwy position of the crowns) as well as the
inclination of the paths of the central loads, thgtimum’ Load Path can be found. For the sake of
brevity, in this paragraph these calculations areraported thanks to the results obtained usieg th
BESO method and illustrated in the next paragraph.
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Figure 3.2. STM of the bridge slab obtained by the LPM
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4. STM FROM THE BESO METHOD
4.1. The application of the Beso Method

Step 6 of the proposed procedure implies the useafitionary optimization procedures and is aimed
at validating the results obtained by the LPM. Bmseaof the time needed to perform such analyses,
this step is optional and, for complex cases, itld¢de applied only to limited parts of the struetu
under study.

Shape optimization is a method that enables desigitefind a suitable structural layout for the
required performances. The ‘Evolutionary Struct@atimization’ (ESO) method was first proposed
by Xie and Steven (1993) in the early 1990s ardh#t been used to solve a variety of size and shape
optimization problems. The basic concept of suahethod is that by slowly removing inefficient
materials, the structure evolves towards an optinilins method has been already applied to design
Strut-and-Tie Models in R.C. structures (e.g. Liahal., 1999; Elia et al., 2002). The validitytb&
ESO method depends, to a large extent, on the assun® that the structural modification (evolution)
at each step is small and the mesh for the fingenent analysis is dense. If too much material is
removed in one step, the ESO method is unable dtone the elements which might have been
prematurely deleted at earlier iterations. In orttermake the ESO method more robust, a Bi-
directional ESO method (BESO) was proposed by Yetrgg. (1999). It allows for efficient materials
to be added to the structure at the same time eaidfficient ones are being removed. For further
details concerning the BESO algorithm used in tha&lyeges presented in this article see Huang and
Xie (2007).

In order to assist the selection of optimal shajmesthe minimum-weight design of continuum
structures with stiffness constraints, the perfaragaof the resulting shape at each iteration can be
evaluated by a Performance Indeixdefined as:

_CW,
cwW

PI (4.1)

whereW, is the actual weight of the initial domai@y is the strain energy of the initial design under
the applied loads, whil&/ andC; are the same quantities of the current desighedtth iteration. It
follows that to the optimal configuration will cespond the highestl.

In the following, the application of the BESO metho the aforementioned four cases of bridge deck
is presented. According to Huang and Xie (200®,Ekolutionary RaticcR and the Filter RadiuBR
have been set to be 0.5% and 0.25 m respectiveilg te maximum admission volume ra#d,ax

and the allowable convergence errdrave been assumed as equal to 1.0% and 0.1% tigsfyedn
Figures 4.1-4.4 the optimal shape is represenmdeéch case the maximum valB&,.. of the



performance index as well as the correspondingev#lwf the volume fraction of the initial domain
are indicated.

Tav

Figure 4.1. Optimal shape a2 TBA Figure 4.2. Optimal shape ddTBA
(Plinax= 1.92;Vs= 33%; light grey = (Plyax= 2.01;V; = 34%; light grey =
compression; dark grey = tension) compression; dark grey = tension)

Figure 4.3. Optimal shape c2TBB Figure 4.4. Optimal shape d6TBB
(Plyax= 1.72;V; = 42%; light grey = (Plyax= 1.79;V; = 41%; light grey =
compression; dark grey = tension) compression; dark grey = tension)

Figures 4.1-4.4 confirm that the solution is almuestfectly symmetrical with respect to the transaér
centre line. Only a slight deviation from such syetm can be found on the lateral transversal
boundaries because of the small stiffness to tmizdrtal displacement of the slab given by the left
end diaphragm. Moreover the validity of the LPM @eggzh has been confirmed by the strict similarity
between the four optimal shapes and the STM reptedén Figure 3.2.

Finally, it has to be added that after having of#dithe ‘optimum’ STM from the above mentioned
approaches it is necessary to check the strendtsguds, ties and nodal zones and eventually to
modify the model in order to satisfy all of the cke.

4.2. Some consider ationsregar ding theresults

According to Schlaich et al. (1987), a Strut-and-Wlodel is constructed by orientating struts aed ti

to the mean direction of principal stress trajeéemrwhich are obtained by performing a lineartaias
finite element analysis (FEA) on an uncracked hoemiation concrete member. However, due to the
uncracked assumption of concrete in the lineattiel&EA, the Strut-and-Tie Model obtained by this
approach may differ from the actual load transfechanism at the ultimate limit states, as reported
by Schlaich and Schéafer (1991). The Strut-and-Ta® obtained on the basis of the elastic stress
analysis in order to realize the real behaviourciafcked structural concrete often needs to be be
adjusted.

Elia et al. (2002) delineated an interactive procedo design Strut-and-Tie Models using ESO; in
this methodology the difference between the stemiergy of the design Strut-and-Tie Model and the
optimal solution, is measured and it allows an eatidn of the ductility demand of the structure.
Vitone et al. (2006) showed the necessity to amalye physical transformations that a structure
undergoes from the uncracked phase to the ultilbatéstage in order to verify whether the structure
is capable of reaching the ultimate design con&gan.

In this scenario, the case under study is partilyulenportant. In the literature it is very commom

find solutions for similar cases based on the agsiom of cracked concrete. For instance Figure 4.5
shows the STM of a building diaphragm accordind-&odis (2009). This model has been obtained
from the superimposition of the deep beam behavamurdescribed in paragraph 2 and the arch-
behaviour (only for the compression chord) as deedrin paragraph 3.



The analysis performed by the LPM and the BESO ltavdirmed that the optimum STM obtained
from a linear elastic analysis is the one represbmt Figure 3.2.

This means that, due to the lack of ductility af concrete structures, if the diaphragm is desigited
the ultimate limit state according to the STM irgliie 4.5, reinforcement should be designed or
checked according to the model in Figure 3.2, ideorto allow the considerable redistribution of
internal stresses immediately after cracking. Sfiictiings highlight the necessity of the proposed
approach.

It is worth noting that when dealing with singleaspdecks, the design of deck reinforcement is often
conditioned by either dimensioning at the ultimlteit state for permanent and variable loads or
minimum reinforcement prescriptions. This meanst ttiee above mentioned check could be
unnecessary. However, this consideration is nobt®oous when dealing with girder bridges with
jointless concrete decks or with link slabs. Thase kinds of bridges are widely used in Italy to
economically solve typical problems inherent to thueability of precast beam ends and maintenance
of joints and bearing systems that have been ribtitsingle span decks built in the '60s, '70s '80d

of the last century (Mezzina et al., 2012).

In these cases the behaviour of decks subjectad-ptane seismic action is conditioned by the
effective stiffness of each pier (that also depesd$ooting and bearings), transversal restraintthe
abutments, ratio of length to the width of eachnsgatal length of deck slab between two adjacent
joints. This is the reason why further work is neg:tb apply the proposed procedure to these kifds o
decks in order to verify whether the check of tkeldreinforcement for in-plane seismic action ik st
unnecessary and whether the assumption of uncragadunder seismic action is still valid.

Finally, regarding the single span deck under stagdymentioned in paragraph 2, bridge deck, at the
seismic ultimate limit state, should remain withire elastic range in order to avoid damage. This
means that the model in Figure 3.2 becomes the @igrence for the ultimate limit state design
(Mezzina et al., 2012).
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Figure4.5. STM of a building diaphragm according to Fardi8(@)

5. CONCLUSIONS

The Strut-and-Tie Model is a very powerful toollwithich to design reinforced concrete structures.
For standard cases it could be a hand-calculatésigd procedure, in which the structural engineer
uses his experience and intuition to find the tromxlel that best fits the region under study. For
unconventional cases the development of the ‘optim8TM could require not only an expert
designer but also the use of special tools foatiaysis.

In this article, a step-by-step procedure basetherStrut-and-Tie Model has been proposed for the
design of R.C. girder bridge decks subjected tersiei in-plane actions.



The efficacy of the proposed approach has beenrslfamvihe case of a single span girder bridge deck.
Moreover, for the case under study, the influent¢he model of geometry of the bridge deck as well
as of the layout of girders and cross-beams has ingestigated.

Further work is needed to apply the method to gitdiglges with jointless concrete decks or wittklin
slabs.
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