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SUMMARY:  

This paper proposes a scheme to estimate the axial force of beams in the steel multi-story buildings in which 

Buckling Restrained Braces (BRB) are used. In the analysis using rigid-floor model, beam axial force is often 

ignored. But in actual, beams connected to BRBs are subjected to axial force, thus the steel beams should be 

designed for combination of axial force and bending. In this paper, a simple method to estimate axial force in the 

beams to which BRBs are connected, is demonstrated and its accuracy is verified using FE models. 
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1. INTRODUCTION 

 

Recently, use of BRB (Buckling Restrained Brace) becomes popular in the seismic region such as 

Japan. It is anticipated to work as the energy dissipation device during earthquakes.  

 

As illustrated in Fig.1.1, the frame where BRBs are installed into, is a truss structure (called as the 

BRB frame hereafter). Therefore the beams to which BRBs are connected, are subjected to axial force. 

However, the deformation capacity of beams is affected by the axial force. For example, when 

subjected to compression, strength degradation due to local buckling might be more frequent than the 

beams without compression. Moreover, the bending strength itself is reduced by axial force. Therefore 

combination of axial force and bending moment should be considered in designing beams in the BRB 

frame.  

 

On the other hand, rigid-floor diaphragm is often assumed in the structural model when conducting 

structural analysis of multi-story buildings. This assumption brings many advantages, for example, 

drastic reduction of DOFs and stabilization by that, simplification of beam design by ignorance of the 

bending moment around the weak axis, etc (Chopra 2010). However, axial deformation of beams is 

perfectly neglected in the rigid-floor model, thus the axial force on beams cannot be obtained by the 

analysis.  

 

Therefore, when using rigid-floor model, the axial forces 

should be estimated applying some procedure. In the 

present study, a simple scheme to estimate the axial force 

on steel beams in the BRB frame, is proposed. The 

estimation accuracy is verified using FE models in which 

the floor and skeleton are separately modelled using shell 

and beam elements, respectively. The FE model is elastic 

except the stress of BRB. The material nonlinearity in the 

behaviour of concrete slab or stud connector is ignored in 

the present study.  

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig.1.1. The BRB frame 

The BRB frame 



2. ESTIMATION OF AXIAL FORCE  

 

2.1 Axial force on composite beams 

 

The beams contained in the BRB frame are assumed to be slab-composite beam. As illustrated in 

Fig.2.1, neglecting the shear force of columns, the inertia force acting on the BRB frame through the 

slab is equal to the difference between the horizontal component of BRBs stress in the i-th and i+1-th 

story.  

 

(2.1) 

 

where P
i
 is the horizontal inertia force including inertia acting on the BRB frame that comes through 

the i-th floor. NdL
i、NdR

i、NdL
i+1 

and NdR
i+1 

are the axial forces of the BRBs in the i-th and i+1-th story.  

 

An assumption, that P
i
, the inertia force, acts to the BRB frame separately from left and right, is 

introduced. The left and right components of P
i
, PL

i
 and PR

i
, are determined by Eq.(2.2). 

 

(2.2) 

 

αL
 
and αR

 
represent the distribution ratio (αL + αR

 
=1). The location on floor plan of the BRB frame 

affects the value of αL
 
and αR. Figs.2.2 show the simplest examples. αL =0.05、αR =0.95 are assumed 

for the case shown in Fig.2.2(a) and αL =αR=0.5 for the case shown in Fig.2.2(b). To determine the 

ratios of αL
 
and αR at more complicated cases, further investigation is required. 

 

Once αL
 
and αR are determined, the axial forces of the composite beams in the BRB frame, are 

estimated using Eqs.(2.3). This is for the case when the BRBs are installed in reverse V shape; 

 

 

(2.3) 

 

 

in which NcbL
i
, NcbR

i
 are the axial forces of the left and right composite beams in the i-th floor. The 

double sign represents the loading direction. The upper sign corresponds to the load toward right and 

the lower sign does reverse. 

 

 

2.2 Axial force on steel beams 

 

2.2.1 Effect of configuration of BRB frame on axial force of beams 

Neutral axis of composite beam locates above the center of steel beam section. Then the steel beam is 

subjected to axial force and bending simultaneously even if the composite beam is subjected to only 

bending (Fig.2.4). 
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Fig.2.1. Equilibrium in the BRB frame 
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The configuration of BRB frame effects on the axial forces of steel beams. When subjected to 

horizontal load toward right, the left end of steel beam is in tension due to bending on the composite 

section. When the configuration of BRB is V-shaped (Fig.2.5), the left beam is in tension due to the 

BRB forces. Therefore these two tensions act together on the steel beam. On the contrary, the stress on 

slab decreases by this stress superposition. When subjected to load toward left, the stress becomes 

reverse but this stress superposition is same. 

 

When the configuration of BRB is reverse-V-shaped (Fig.2.6), the BRB forces yield the beam axial 

forces reverse to those due to bending. Therefore the axial forces of steel beams become smaller than 

those without BRB. But the stress of slab becomes larger. 

 

2.2.2 Estimation of axial force on steel beams 

The AIJ recommendation (the AIJ 2010) provides an explanation on section analysis of composite 

beams subjected to bending. Referring to the recommendation, a simple form to estimate the axial 

force on steel beam in composite section is derived herein. The composite section is subjected to both 

bending and axial force. 

 

As indicated in Fig.2.7, an equilibrium among the axial forces (tension positive) holds. 

 

(2.4) 

 

where Ncb, Nsb and Nsl are the axial forces on the composite section, steel beam section and floor slab, 

respectively. The suffices to represent the location of composite beam L,R and 
i
 are omitted. The 

bending moment on composite beam section (denoted by Mcb) is expressed in terms of Nsb, Nsl and Msb. 

Msb is the bending moment on the steel beam section. 

 

(2.5) 
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Fig.2.5. Stress in V-shaped BRB frame Fig.2.6. Stress in Reverse V-shaped BRB frame 

Fig.2.7. Stress in composite beam section 
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where jsb and jsl are the distance between the centers of composite and steel sections, composite and 

slab, respectively. Assuming elasticity, Eqs(2.4) and (2.5) are replaced into a simultaneous equation. 

 

 

 

 

(2.6) 

 

 

where E represents the Young’s modulus of steel. Isb and Asb are the second moment of inertia and area 

of the steel beam section. Asb and n represents the area of slab and the Young’s modulus ratio of steel 

to concrete. When determining Asb, an effective width of slab is required. It is determined according to 

the AIJ recommendation. j is the distance between the center of steel beam and slab. κ represents the 

curvature of composite beam. By solving Eqs.(2.6), Xsb is obtained. 

 

 

(2.7) 

 

 

 

By substituting Xsb into Eqs.(2.6) again, κ is calculated. Then Nsb is calculated using Eq.(2.8). 

 

(2.8) 

 

When the deformation and stress in composite beam are small enough to assume elastic behavior, one 

can estimate the axial force on steel beam using Eq.(2.8) , from the axial force and bending moment 

on the composite beam. 

 

 

3. VERIFICATION BY FE-ANALYSIS  

 

 

3.1 Verification using one-way FE model (Model 1) 

 

3.1.1 FE-Model 

Using an FE model in which the slab and beam is separately modeled, the precision of estimated axial 

force is verified. At first, a one-way model (called as the “Model 1” hereafter, see Fig.3.1) is employed. 

This is a portion of a 3-storey building. The overview on the whole building is given in Fig.3.2 and 

Table 3.1.  
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Fig.3.2. Model building 
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Fig.3.1. Model 1 
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The used FE software is MARC 2010 (MSC 2010). Elastic beam element is used for the model of 

column and beam. The panel zone is neglected. 4-node elastic shell element is used for the model of 

floor slab. The beam and shell elements are connected by rigid bar. Fig.3.3 illustrates this modelling 

concept. The Young’s moduli and Poisson’s ratio of beam elements are 2.05x10
5
 N/mm

2
 and 0.3. 

Those for the concrete slab are 2.05x10
4
 N/mm

2
 and 0.15.  

 

Static pushover analysis is carried out. An assumption that all the mass of building distributes on the 

floor slab is introduced. The distributed mass is 8kN/m
2
 for the 1

st
 and 2

nd
 floor, and 10kN/m

2
 for the 

3
rd

 floor. The horizontal inertia force modelling earthquake load is given for the distributed mass on 

the floors. The horizontal loads for each floor are determined according to the BSL of Japan (BSL 

2007). It is given in terms of story shear force Q
i
.  

 

(3.1) 

 

in which Z and Rt are the seismic zone factor and vibration characteristic factor, respectively. 1.0 is 

given for the both herein. Co is the standard base-shear coefficient.ΣW
i
 is the weight to be supported 

by the story. A
i
 is the vertical distribution factor.  

 

 

 (3.2) 

 

in which T is the 1
st
 natural period calculated assuming T=0.03h (h: the height). Wt is total weight 

above ground. Only the BRB is modeled as inelastic truss element in which a bi-linear 

force-deformation relation (Fig.3.4) is assumed. The yield force of the BRB is determined by Eq.(3.3). 

 

(3.3) 

 

in which two values, 0.3 and 0.6, are given for β. 1.0 is set to Co in the calculation of Q
i
. 

 

Three FE models where the location of BRB frame is varied are made (Fig.3.5), called as the “Model 

1-a,1-b and 1-c”, respectively. Fig.3.6 shows an example of analyzed stress distribution. The color of 

the floor slab represents the intensity of Von Mises’ stress at the middle surface.  
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3.1.2 Verification 

As for the Model 1, the axial forces on composite beams are calculated using the axial forces on floor 

slabs and steel beams directly obtained in the FE analysis. Fig.3.7 compares the estimated and 

obtained axial forces on the composite beams. In the estimation, Eq.(2.3) is applied where the 

combination of (αL
 
,αR)

 
are assumed to be (0.05,0.95) for the Model a, (0.25, 0.75) for the Model b and 

(0.5,0.5) for the Model c. 

 

Good agreement between the analysis and estimation is observed. The estimation at β=0.6 is more 

close to the analysis than that at β=0.3. This is because the effect of shear force of column, neglected 

in the estimation, is relatively smaller.  

 

 

3.2 Verification of estimated axial force on steel beam using rigid floor model 

 

New two FE models for the whole structure of building shown in Fig.3.1 are constructed. One model 

is constructed assuming rigid-floor diaphragm (called the “Model 2” hereafter), which is ordinarily 

employed in structural design. The rigidity of composite beam is calculated according to the AIJ 

recommendation on composite structures (AIJ 2010).  

 

The “Model 3” in which the slabs and beams are separately modeled, is constructed based on the same 

methodology as what is used in constructing the Model 1. Moreover, three models for each whole 

structure model are constructed (called as the Model 2-a,2-b 2-c, 3-a, 3-b and 3-c) where the location 

of BRB frame is varied like the Model 1. Figs.3.8 illustrates the Model 2-c and 3-c, for examples.  

 

In the estimation procedure, firstly the axial force on the composite beams Ncb is estimated using 

Eqs.(2.1)-(2.3). The combination of (αL
 
,αR)

 
are determined similarly to the Model 1. Then the axial 

force on steel beams are estimated using Eqs.(2.7) and (2.8). For Mcb, the bending moment on 

composite beam obtained in the analysis of the Model 2 is used.  

 

   
 

 
 
 
 
 
 
 
 
 
 
 

0 500 1000 1500 2000 2500

Ⅰ

Ⅱ

Ⅲ

ⅠⅡⅢ

3F Analysis 962909891

3F Estimate 942942942

2F Analysis 127214551487

2F Estimate 149414941494

1F Analysis 213119441927

1F Estimate 186618661866

β=0.3

UNIT:kN

0 1000 2000 3000 4000 5000

Ⅰ

Ⅱ

Ⅲ

ⅠⅡⅢ

3F Analysis 184818491828

3F Estimate 188418841884

2F Analysis 298529843000

2F Estimate 298729872987

1F Analysis 387839383920

1F Estimate 373337333733

β=0.6

UNIT:kN

Figs.3.8. Model 2-c and 3-c 

Figs.3.7. Verification using Model 1 

RIGID FLOOR 



Figs.3.9 compares the estimated and analyzed axial forces on steel beams. The analyzed axial forces 

are obtained using the Model 3. The estimation error is larger than that of the one-way structure. It is 

considered to be due to the 2D extension of the stress distribution of slab. Moreover, errors when 

β=0.3 is relatively larger. It is considered to be due to the ignorance of column shear force when 

deriving Eqs.(2.1)-(2.3).  

 

 

4. CONCLUSIONS  

 

In the present paper, a simple scheme to estimate the axial force of steel beams in the BRB frame, is 

demonstrated. In the procedure, axial force on composite beams is estimated using Eqs.(2.1) to (2.3).  

 

To calculate the axial force on steel section using Eqs (2.7) and (2.8), the bending moment on 

composite beam is required as well as the axial force. Rigid-floor model in which the beam is modeled 

as composite beam can provide the bending moment.  

 

Verification using some FE models where the slabs and beams are individually modeled. As for the 

present models, the estimated axial forces show good agreement to the analyzed values. 

 

However, the FE models might be too simple. In actual construction, many nonlinear factors, such as 

yield of skeleton, material strength of concrete slab, yield of stud bolt or contact and friction between 

column and slab, exist. Therefore use of more detailed nonlinear model is required.  
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Figs.3.9. Comparison between estimated and analyzed axial forces 
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