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SUMMARY:  
This paper investigates the dynamic behaviour of the external walls of unreinforced masonry historic buildings 
with flexible diaphragms subjected to out-of-plane bending. The influence of diaphragms flexibility on the 
displacement capacity and demand of walls in out-of-plane bending has been studied by means of dynamic 
analyses with a simplified two-degrees-of-freedom model (2DOF). The wall has been modelled as an 
assemblage of two rigid bodies connected by an intermediate hinge and restrained at the top by a spring: the 
damping has been modelled through the introduction of the coefficient of restitution. The equations of motion of 
the 2DOF system have been derived and integrated in the time domain. Dynamic analyses of a set of walls with 
Gaussian impulse and recorded accelerogram inputs have been performed in order to compare the response of 
the simply supported wall with the one of the wall with an elastic spring at the top.  
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1. INTRODUCTION 
 
The observation of the damages produced by earthquakes on historical unreinforced masonry 
buildings pointed out that out-of-plane collapses of the external walls are frequent and very dangerous 
even in terms of loss of human lives. Historical buildings are in fact characterized by weak 
connections between the different structural elements and tend therefore to exhibit local collapses 
before global ones. During earthquakes single parts separate from the rest of the building, often 
behaving as quite independent structural elements. The study of the behaviour of such mechanisms is 
then essential and has been undertaken by many authors in the recent years. Different approaches have 
been proposed, like static, kinematic or dynamic analyses, elasto-plastic, no-tension or rigid models 
but the experimental tests are still relatively few and have been concentrated on the simplest failure 
modes because of their simpler reproducibility and interpretation (parapet wall or simply supported 
wall). Housner work (Housner, 1963) represented the basis of the dynamic studies on the wall as a 
single rigid block: other studies followed his hypotheses and delved into this topic, but only recently 
some analytical and experimental studies (Doherty, 2000; Doherty et al., 2002; Griffith et al., 2003; 
Griffith et al., 2004; Lam et al., 2003; Sorrentino, 2003; Sorrentino, 2008) highlighted the necessity of 
dynamic analysis in order to understand the real behaviour of walls in out-of-plane bending and to 
assess, without an over conservative approach, the vulnerability against earthquake action. They 
pointed out the fact that out-of-plane failures of walls are caused essentially by an excessive 
displacement demand rather than force or acceleration demand and that static methods, focused on the 
comparison between forces and resistance, cannot then catch some specific aspects related to the 
dynamic behaviour. Quite all the past works considered simplified hypotheses about the interaction of 
the wall with the rest of the building, assuming diaphragms as rigid and reducing therefore the 
complexity of the dynamic problem and the number of the degrees of freedom. The path of the seismic 
action from the ground to the out-of-plane walls implies a filtering effect of the shear walls and 
diaphragm response: when the diaphragms cannot be considered as rigid, like in most historical 
buildings, the inputs to the out-of-plane walls at adjacent floors have different amplitude, phase and 



frequency content. In this case it is necessary to consider multiple-degrees-of-freedom instead of the 
usual single-degree model. There are really few studies (Simsir, 2004) that take directly into account 
the influence of flexibility of diaphragms on the displacement capacity and demand. Extending some 
formulations proposed by other authors (Doherty, 2000; Sorrentino, 2003; Simsir, 2004) a simplified 
2DOF model has been developed to analyse the dynamic out-of-plane behaviour of a single wall with 
the hypothesis of flexible diaphragm. The equations of motion of the wall have been derived and an 
algorithm for their numerical integration has been developed: the main results are presented. 
 
 
2. MODEL DESCRIPTION 
 
A simplified 2DOF model has been developed to analyse the dynamic out-of-plane behaviour of a 
single wall, with an intermediate hinge and an elastic spring at the top. The wall, as shown in Fig. 1.1, 
is modelled as an assemblage of two rigid bodies, a lower and an upper part, each one free to rotate 
around the intermediate hinge. 
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Figure 2.1 2DOF model of the wall in out-of-plane bending 
 
In Fig. 2.1 W1 and W2 are the weights of the lower and upper part of the wall, Wd is the overburden 
load from the diaphragm, Kd is the translational stiffness of the spring at the top, that simulates the in-
plane stiffness of the upper diaphragm and is considered perfectly elastic, q1 e q2 are the rotations, 
respectively of the lower and the upper portion of the wall related to the vertical axis, that have been 
assumed as independent variables. The intermediate hinge has been assumed at the mid-height of the 
wall and the load Wd is supposed to be applied at the middle of the thickness, in order to reproduce the 
hypotheses made by Doherty in his study on the simply supported wall (Doherty, 2000) and to 
compare the results obtained by Doherty with the ones of the present study.  
 
 
3. EQUATIONS OF MOTION 
 
The equations of motion of the 2DOF system have been derived by applying Lagrange equations, 
considering the kinetic energy due to the translation of the masses and to the rotation of the two parts 
of the wall around the respective centroids and the potential energy due to the translational spring at 
the top and to the contribution of the gravitational loads. The above mentioned quantities have been 
calculated with the assumption of small displacements.  
 
3.1. Geometric possible configurations 
 
The equations of motion are highly non linear because of the sudden change of the point of rotation at 
the base and at the intermediate hinge. There are four different conditions described by four 
corresponding sets of equations (see Fig. 3.1): the passage from one condition to another is determined 
by an impact at the bottom or at the intermediate hinge associated with the change of the centre of 
rotation (see Fig. 3.2).  
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Figure 3.1 2DOF model of the wall in out-of-plane bending 

 
Every time q1 passes through the zero, there is an impact at the bottom and a change of the centre of 
rotation (O to O’ or O’ to O): similarly, every time q1 =q2, there is an impact at the intermediate hinge 
and a change of the centre of rotation (C to C’ or C’ to C).  
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Figure 3.2 Impacts at the bottom hinge (left, q1=0) and at the intermediate hinge (right, q1= q2)  

 
3.2. Energy dissipation 
 
Following the Housner model (Housner, 1963), the dissipation of energy is concentrated at every 
impact at the base of the wall and is modelled through the introduction of the coefficient of restitution, 
er <1, that relates the velocities after each impact to those immediately before, reproducing the loss of 
kinetic energy at each impact. 
 
3.3. Equations of motion 
 
Assuming h for the total height of the wall, g for the gravity acceleration, W1=W2, because of the 
position of the intermediate hinge at the mid-height of the wall, and the clockwise rotations as 
positive, the equations of motion are:  
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The coefficients of the mass matrix are reported in Eqn. 3.2: 
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The coefficients of the stiffness matrix are reported in Eqn. 3.3: 
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The terms peff,1(t) and peff,2(t) represent the contribution due to the ground acceleration. They are 
reported in Eqn. 3.4: 
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The terms Ai and Bi in Eqn. 3.1 are different in the four conditions: they are expressed in Eqn. 3.5, 3.6, 
3.7, 3.8. 
Condition 1 (q1>0 and q2<q1): 
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Condition 2 (q1<0 and q2>q1): 
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Condition 3 (q1>0 and q2>q1): 
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Condition 4 (q1<0 and q2<q1): 
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4. NUMERICAL ALGORITHM 
 
An algorithm for the numerical integration of the sets of the equations of motion in the time domain 
has been developed: a variable step size Runge-Kutta integration method of 4th-5th order, 
implemented in Matlab ODE-suite ODE45, has been used. A local error control has been performed at 
each step of the numerical integration: sufficiently small values of relative tolerance RelTol and 
absolute tolerance AbsTol have been assumed (RelTol=10-5 and AbsTol=10-10). The strong nonlinearity 
of the set of equations of motion is produced by the sudden change of the sign of the resisting moment 
of the weights W1 and W2 and of Wd about the effective centre of rotation at the bottom and 
intermediate hinges, corresponding to the sudden change of the position of the hinge at every impact. 
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Eqn. 4.1 and Eqn. 4.2 present the expression of Mq1 and Mq2: Mq1 is the resisting moment about the 
bottom hinge O or O’ (depending on the actual condition) of the self weight W1 of the lower part of the 
wall and of the weights W2=W1 and Wd  transferred from the upper to the lower part of the wall at the 
intermediate hinge C or C’; Mq2 is the resisting moment about the intermediate hinge C or 
C’(depending on the actual condition) of the weights W2 and Wd. Ai and Bi  are presented in Eqn. 3.5, 
Eqn. 3.6, Eqn. 3.7 and Eqn. 3.8 and represent the resisting moments Mq1 and Mq2 when the 
independent variables q1 and q2 are zero. 
 
Fig. 4.1 shows the diagrams of Mq1 in the 4 conditions (green and red continuous lines): the blue 
dotted line represents the diagram of Mq1 in the hypothesis of rigid behaviour of the wall. Similarly to 
what proposed in Doherty studies (Doherty, 2000), a finite stiffness instead of an infinite stiffness at 
q1=0 is assumed, so that the two purple and yellow lines describe the transition from one condition to 
another at q1=0. The algorithm follows then these lines instead of the blue ones of the rigid behaviour. 
The parameters -D12,1, -D34,1,  D34,1, D12,1 are the values of q1 at the intersections of the diagrams of Mq1 
in the 4 conditions with the line of finite stiffness. Transitions from condition 1 to 4 or from 4 to 1 and 
from 2 to 3 or from 3 to 2 take place when an impact at the intermediate hinge occurs (q1=q2) and are 
represented by the vertical black dotted lines. 
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Figure 4.1 Resisting moment Mq1 in the 4 conditions 

 



Fig. 4.2 shows the diagrams of Mq2 in the 4 conditions (red continuous lines): the couples of conditions 
1 and 4, 2 and 3 have the same diagram. Similarly to the diagram of Fig. 4.1 an initial finite stiffness is 
assumed (purple dotted line). The parameters -D12,2, D12,2 are the values of q2 at the intersections of the 
diagrams of Mq2 in the 4 conditions with the line of finite stiffness. Transitions from conditions 1 or 4 
to conditions 2 or 3 or from conditions 2 or 3 to conditions 1 or 4, corresponding to an impact at the 
intermediate hinge (q1=q2), are represented by the vertical black dotted lines, while transitions at q1=0 
do not cause any jump in the diagram. 
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Figure 4.2 Resisting moment Mq2 in the 4 conditions 

 
Defined the initial conditions q1(0), q2(0), 1(0)q , 2 (0)q  the numerical algorithm integrates the 
equations of motion of the Eqn. 3.1 until the first event: the algorithm can detect the events at the 
target values of q1 and q2: the integration stops when the variable q1 assumes the values -D12,1, -D34,1,  
0, D34,1, D12,1 or when the variable q2 assumes the values -D12,2, D12,2 or when q1= q2. State variables 
identify the condition corresponding to each time step: the value of these variables at the event defines 
the condition before the event and allows the algorithm to decide which condition to assume 
afterwards and which line to follow in Fig. 3.1 and 3.2. Except for the impact for q1=0, the values of 
the rotations q1 and q2 and the corresponding angular velocities after every event are the same detected 
at the event. These are the new initial conditions of the differential equations that the algorithm 
assumes in order to integrate the appropriate equations, depending on the effective initial geometrical 
configuration of the wall. For q1=0, the rotations after the impact are the same as the ones before the 
impact, while the angular velocities of the lower and upper part of the wall are reduced by the 
restitution coefficient er<1.  
 
 
5. RESULTS 
 
An algorithm for the integration of the equations of motion of the semi-rigid 1DOF model proposed by 
Doherty (Doherty, 2000) has been implemented to validate the numerical strategy used in the present 
work and to compare Doherty’s results to the ones obtained with the 2DOF model in the case of a very 
high value of stiffness of the top spring: in that case the top and bottom absolute displacements of the 
wall tend to be equal and in phase and the behaviour of the 2DOF model should coincide with the one 
of the simpler 1DOF model. The experimental and analytical results obtained by Doherty showed a 
good agreement with the 1DOF model developed in the present work. Dynamic analyses with 
Gaussian and recorded accelerogram inputs have been performed on a set of walls, varying the values 
of the stiffness Kd at the top and studying its influence on the displacement demand. A coefficient of 
restitution er=0.86 is used both for the 1DOF and for the 2DOF model. 
 
5.1. Set of walls 
 
A set of 3 walls with different characteristics, in terms of maximum resisting force and ultimate 
displacement in the hypothesis of rigid behaviour (see Table 5.1 and Fig. 5.1) has been considered.  
 
 



Table 5.1. Set of considered walls 
Wall b h Ψ W Re1 Δu F0/W Δu/b 
  [m] [m] [-] [KN/m] [KN/m] [m] [-] [-] 
1 0,15 2,5 0 6,622 1,192 0,150 0,180 1,000 
2 0,15 2,5 0,5 6,622 1,639 0,138 0,248 0,917 
3 0,15 2,5 1 6,622 2,086 0,131 0,315 0,875 
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Figure 5.1 Adimensional force-displacement curves of the 3 walls 

 
In Table 5.1 b is the thickness, h is the height, W is the self weight of the wall, Ψ is the ratio between 
Wd and W1, Re1 is the rigid threshold resistance and Δu is the ultimate displacement, calculated 
following Doherty formulation (Doherty, 2000; Doherty et al., 2002). 
 
5.2. Semi-rigid 1DOF model 
 
The semi-rigid 1DOF model proposed by Doherty has been implemented. Fig. 5.2 shows the mid-
height acceleration-displacement curve for the rigid (blue dotted line) and semi-rigid model (red line).  
In Fig. 5.2 Δu is the ultimate displacement, Δ1 and Δ2 are displacements related to material properties 
and to the state of degradation of the mortar joints at the pivot points. The values of Δ1 and Δ2 have 
been assumed in accordance with the proposed formulations of Sorrentino (Sorrentino, 2003) and are 
expressed in Eqn. 5.1 and Eqn. 5.2. 
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Figure 5.2 Simply supported wall (1DOF model): mid-height acceleration-displacement curve 

 
5.3. Gaussian inputs 
 
Gaussian impulse inputs in terms of displacement with duration T1=1 s and T2=2 s and variable 
maximum amplitudes have been used to perform dynamic analyses on the set of walls. 4 different 
values of the stiffness Kd of the spring at the top in the 2DOF model have been considered (Kd= 1000 
KN/m, 100 KN/m, 50 KN/m and 10 KN/m). Fig. 5.3 shows the displacement time-histories of wall n.1 
for Gaussian input with amplitude D=40 mm and T1=1 s for the 1DOF model and 2DOF model: 
increasing the value of Kd, the response of the 2DOF model tends to reproduce well the response of  



the 1DOF model, so that the top displacement s2 becomes close to zero. Diminishing Kd the top 
displacement s2 increases. The rotations q1 and q2, in opposition of phase in the 1DOF model, become 
more uncoupled and independent. The mid-height displacement s1 increases passing from Kd=1000 
KN/m to Kd=50 KN/m, but begins to decrease when Kd=10 KN/m. For that value of Kd the top 
displacement s2 becomes larger than the mid-height displacement s1 and s2 and  s1 begin to be in phase.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3 Wall n.1: displacement time-histories for 1DOF and 2DOF models with different values of Kd; 

s1=mid-height displacement, s2=top displacement; gaussian input with amplitude D=40 mm and duration T1=1 s 
 
Table 5.2. Gaussian input: maximum mid-height and top displacements s1 and s2; comparison between 1DOF 
and 2DOF results   
      Maximum displacement |Δ|max 
Wall Impulse Impulse 1DOF 2DOF 
  duration amplitude   Kd=1000 KN/m Kd=100 N/m Kd=50 KN/m Kd=10 N/m 
      s1 s1 s2 s1 s2 s1 s2 s1 s2 
    [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] 
1 T1=1 s 0,040 0,064 0,066 0,002 0,069 0,021 0,073 0,040 0,053 0,085 
2 T1=1 s 0,040 0,040 0,613 0,003 0,093 0,036 0,058 0,047 0,033 0,073 
3 T1=1 s 0,050 0,033 0,068 0,008 0,056 0,056 0,034 0,063 0,030 0,053 

 
Table 5.2 shows the maximum displacements s1 and s2 of walls n.1, 2 and 3 for Gaussian impulse 
inputs with duration T1=1 s and different amplitudes: the trend described for wall n.1 in Fig. 5.3 is 
confirmed. Increasing the value of Kd the top displacement s2 becomes close to zero, while the mid-
height displacement s1 increases until a specific value of Kd and then diminishes, so that s2 becomes 
greater than s1. With a significant overburden load (wall n.3) s1 decreases while Kd gets smaller. The 
trend for Gaussian inputs with T2=2 s is similar to the one with T1=1 s. 
 
5.4. Recorded accelerogram inputs 
 
6 recorded accelerograms have been assumed as input to perform dynamic analyses on the 3 walls. 
Table 5.3 describes the characteristics of the records.  
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Table 5.3. Recorded accelerograms used in the analyses 
Event Year Station Id. Component PGA 
Imperial Valley 1940 El Centro Elce S00E 0.348 g 
Friuli 1976 Tolmezzo tolm 270 0.315 g 
Irpinia 1980 Sturno stur 270 0.358 g 
Loma Prieta 1989 Capitola loma 000 0.529 g 
Northridge 1994 Sylmar Hospital Sylm 360 0.843 g 
Kobe 1995 KJMA kjmh 000 0.821 g 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.4 Wall n.1: displacement time-histories for 1DOF and 2DOF models with different values of Kd; 
s1=mid-height displacement, s2=top displacement; El Centro recorded accelerogram scaled to 50% of PGA 

 
Fig. 5.4 shows the displacement time-histories of wall n.1. for El Centro record, scaled at 50% of 
PGA, for the 1DOF model and for the 2DOF model: for the value of Kd =500 KN/m, the response of 
the 2DOF model tends to reproduce the response of  the 1DOF model, even better than for Gaussian 
inputs. Diminishing Kd the top displacement s2 increases and has a significant magnification for Kd=50 
KN/m, when it becomes quite 3 times the value for Kd =500 KN/m. For Kd=5 KN/m the top 
displacement s2 becomes greater than the mid-height displacement s1.  
 
Table 5.4. Recorded accelerograms: maximum mid-height and top displacements s1 and s2; comparison between 
1DOF and 2DOF results   

Wall 1 Maximum displacement |Δ|max 
    1DOF 2DOF 
Accelerogram % PGA   Kd=500 KN/m Kd=50 KN/m Kd=5 K/m 
     s1 s1 s2 s1 s2 s1 s2 
    [m] [m] [m] [m] [m] [m] [m] 
elce 50 0,043 0,043 0,004 0,137 0,019 0,050 0,109 
tolm 100 0,094 0,094 0,004 0,114 0,036 0,048 0,095 
stur 80 0,053 0,048 0,005 0,035 0,023 0,082 0,074 
loma 50 0,031 0,034 0,004 0,039 0,026 0,056 0,078 
sylm 35 0,045 0,047 0,005 0,057 0,028 0,077 0,082 
kjmh 20 0,063 0,068 0,004 0,046 0,035 0,060 0,114 
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Table 5.4 shows the maximum displacements s1 and s2 of wall n.1 for recorded accelerogram inputs 
scaled at different percentage of PGA: the trend described in Fig. 5.4 is partially confirmed, even if it 
is less regular for different ground motions. Increasing the value of Kd the top displacement s2 
becomes close to zero; the mid-height displacement s1 does not follow a common trend for all the 
records. With high values of Kd the collapse of the wall takes place because of excessive mid-height 
displacement demand as in the case of simply supported wall (1DOF). With small values of Kd, s2 
becomes greater than s1 and collapse takes place for excessive top displacement demand, similarly to 
the parapet wall. Results obtained for wall n. 2 and n. 3 are similar to the ones obtained for wall n. 1.  
 
5.5. Observations 
 
An extension of the present study will be necessary to better investigate the influence of diaphragm 
flexibility on the out-of-plane behaviour of walls. It is anyway already possible to highlight that 
neglecting diaphragm flexibility can be either over conservative or can lead to a significant and 
dangerous underestimation of the displacement demand on the wall, depending on the characteristics 
of the input and of the wall. The flexibility of the diaphragms has in fact a strong influence on the 
displacement demand and appears to be an important parameter to be included in the dynamic 
analyses of out-of-plane behaviour of unreinforced masonry walls.  
 
 
6. CONCLUSIONS 
 
The present work is an attempt to extend some formulations and concepts proposed by other authors 
for the parapet wall and for the simply supported wall to the case of the out-of-plane bending of walls 
in buildings with flexible diaphragms. The results of dynamic analyses on a set of walls with Gaussian 
impulse or with recorded accelerogram inputs has been investigated: the stiffness of the diaphragm has 
a strong influence on the displacement demand of the walls, even if it seems that it is not possible to 
define a general rule to predict such demand without performing dynamic analyses. The hypotheses 
made in developing the model and the numerical algorithm need to be validated by experimental tests. 
Future developments could be the modelling of the inelastic behaviour of the spring at the top and the 
definition of a 3-degrees-of-freedom model that includes the in-plane walls.  
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