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SUMMARY 
This paper shows the use of spring-mass models to develop the equations of motion so the dynamic analysis of 
two-story buildings having linear stiffness on each floor can be carried out. If a two-story building is modelled as 
a shear-building, a scale-down physical spring-mass model can be constructed and tested using a shake table. On 
the other hand, if the model represents a moment resistant frame, a physical model using actual masses and 
springs becomes difficult to construct as one of the springs attached to the second floor may have a ‘negative’ 
stiffness. The main objective of this paper is to present an equivalent spring-mass model incorporating an 
equivalent structure, instead of using a spring with negative stiffness. The use of this equivalent spring-mass 
model will allow to obtain the dynamic response of two-story buildings subjected to horizontal loads, such as 
wind or ground acceleration. 
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1. INTRODUCTION 
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The mechanical models of structures can be represented by spring-mass systems (Brennan et al., 2008; 
Delhomme et al., 2007; Wu, 2004). When dealing with building structures subjected to earthquake 
loads, single-story buildings (SSBs) and multi-story buildings (MSBs) can also be represented by 
spring-mass models (SMMs) (De la Cruz and López-Almansa, 2006; Wilkinson and Thambiratnam, 
2001). For example, in Fig. 1.1a a SSB is shown. The length of the girder is represented by L and the 
height of the frame is represented by H. If the girder flexural stiffness, represented by EIb, is infinitely 
rigid, the distorted shape of the SSB when subjected to the ground acceleration )(txg is shown in Fig. 
1.1b, where the horizontal coordinate x stands for the single degree of freedom of the frame. The 
corresponding SMM is sketched in Fig. 1.1c. The quantities m, c and k represent, respectively, the 
mass of the girder, the viscous damping of the SSB and the overall stiffness of the SSB. In this case, 
this stiffness k is a function of the flexural stiffness, EIc, of both columns, and the height H. On the 
other hand, if EIb is no longer infinitely rigid, the assumed motion of the SSB is shown in Fig. 1.1d, 
and its SMM is shown in Fig. 1.1e. In this case, the actual stiffness k’ is a function of both flexural 
stiffnesses, EIb and EIc, and the length L and height H. 
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The equation of motion of the model shown in Fig. 1.1c is   
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   ( )gmx cx kx mx t+ + = −                                                                                                        (1.1)                      
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where the upper dots represent the time derivatives of x. The equation of motion of the model shown 
in Fig. 1.1e is the same Eqn. (1.1) provided that the actual stiffness k’ will replace k. 
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Now, a two-story building (TSB) is shown in Fig. 1.2a; the length of the girders is represented by L 
and the heights of the frame floors are represented by H1 and H2; the degrees of freedom of the TSB 



are the horizontal displacements x1 and x2. Again, assuming that the girders are infinitely rigid (i.e., 
EIb1 → ∞ and EIb2 → ∞), the distorted shape of the TSB when subjected to a ground acceleration 

)(txg is shown in Fig. 1.2b. The corresponding SMM is sketched in Fig. 1.2c. In contrast, if the 
flexural rigidity of the girders, EIb1 and EIb2 is finite, the actual distorted shape will be as shown in Fig. 
1.2d and the corresponding SMM is depicted in Fig. 1.2e. Note that an additional spring k3 has to be 
‘connected’ from the rigid wall ―representing the ground― to the mass m2 ―representing the second 
floor― since the stiffness of the overall system has to be modified to include both the lateral and the 
rotational degrees of freedom (Cheng, 2001). 
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Figure 1.1. Single-story building modelled as a single-degree-of-freedom system 
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The equation of motion of the model shown in Fig. 1.2c is   
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   ( )gx t+ + = −Mx Cx Kx Mr                                                                                                 (1.2) 
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where M, C and K represent the mass, damping and stiffness matrices, respectively; x represents the 
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(a) Single-story building (SSB) subjected to a ground acceleration 

(b) Distorted shape of the SSB if EIb → ∞                      (c) Spring-mass model for the frame (b) 

(d) Distorted shape of the SSB if EIb ≠ ∞                      (e) Spring-mass model for the frame (d) 

c
m

x(t) 

)(txg

k’



displacement vector and r is a unit vector. 
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Figure 1.2. Two-story building modelled as a multi-degree-of-freedom system 
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Expanding Eqn. (1.2), we obtain 
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   1 1 1 2 2 1 1 2 2 1 1

2 2 2 2 2 2 2 2 2

0 0 1
( )

0 0 1 g
m x c c c x k k k x m

x t
m x c c x k k x m

+ − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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         (1.3) 
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where subscripts 1 and 2 refer to floor 1 and floor 2, respectively. 
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(a) Two-story building (TSB) subjected to a ground acceleration 

(b) Distorted shape of the TSB if EIbi → ∞                      (c) Spring-mass model for the frame (b) 

(d) Distorted shape of the TSB if EIbi ≠ ∞                      (e) Spring-mass model for the frame (d) 
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On the other hand, the equation of motion of the model shown in Fig. 1.2e is   
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   ( )gx t+ + = −*Mx Cx K x Mr                                                                                              (1.4) 
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Expanding Eqn. (1.4), we obtain 
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    (1.5) 
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The new stiffness matrix 1 2 2

2 2 3

k k k
k k k
+ −⎡ ⎤

= ⎢ ⎥− +⎣ ⎦
*K  is generally obtained after making a static matrix 

condensation (Cheng, 2001).Note that Eqn. (1.2) is not longer valid for the model shown in Fig. 1.2e 
as the overall stiffness matrix K* in Eqn. (1.4) is obtained by adding a new stiffness coefficient k3 to 
the former matrix K.  
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As a final remark of this introduction, we know that for the SSB both conditions (‘shear building’, SB, 
and ‘moment resistant frame’, MRF) can be represented for the same equation of motion ―Eqn. 
(1.1)― since the stiffness of the overall system, k, can be modified to include both the lateral and the 
rotational degrees of freedom of the nodes (De la Cruz and López-Almansa, 2006). For the TSB, 
however, a similar modification cannot be carried out since we are dealing with a stiffness matrix, 
instead of a single coefficient, which is the case of the SSB. 
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This paper deals with a procedure to get the dynamic response of TSBs (either SBs or MRFs) 
represented by SMMs when subjected to lateral forces (i.e., wind, earthquake). 
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2. DEVELOPMENT 
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2.1. The Two-Story Building (TSB) 
Blank line 11 pt 
The TSB shown in Fig. 1.2a is going to be considered for this analysis. As already seen, when the 
rigidity of the girders, (EIb)i, approaches to infinity, the assumed distorted shape of the frame is shown 
in Fig. 1.2b, its SMM is depicted in Fig. 1.2c and the equation of motion is equal to Eqn. (1.2). Now, 
considering the flexural rigidity of both girders and columns, the distorted shape of the frame is 
depicted in Fig. 1.2d, its SMM is shown in Fig. 1.2e and the equation of motion is equal to Eqn. (1.4). 
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The stiffness coefficient k2 + k3 of the stiffness matrix K* is what makes difficult to build a physical 
model of the TSB as the term k3 can be either positive or negative (De la Cruz and López-Almansa, 
2006). The latter case, i.e., k3 < 0, means to attach a spring with negative stiffness to mass m2. In this 
work, a procedure is developed to deal with either possibility —a positive or negative k3. 
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2.2. Construction of an Equivalent Spring-Mass Model 
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It is possible to construct a SB ‘equivalent’ to a MRF using a spring-mass model, provided that the 
angular frequencies ωn1 and ωn2 of the new model are equal to those of the original model. Fig. 2.1 
illustrates this affirmation. 
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In order to convert model of Fig. 2.1b whose new matrices are M’, C’ and K’ into model of Fig. 2.1a, 
whose original matrices are M, C and K*, it is necessary to determine parameters γ and ε as follows: 
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where parameters α, β and ε in Eqn. (2.2) must accomplish the following: 
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   αβε2 = 1                                                                                                                               (2.3) 
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The new mass and stiffness matrices will be 
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Figure 2.1. Spring-mass models for a MRF and its ‘equivalent’ SB 
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The damping matrix C’ can be the same C as before. 
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It is important to notice that the new matrices M’ and K’ will yield equal angular frequencies to those 
obtained with the original matrices M and K. 
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(a) Spring-mass model of a two-story MRF subjected to a ground acceleration 

(b) Spring-mass of a shear-building (SB) ‘equivalent’ to model (a) 
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3. APPLICATIONS 
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3.1. Numerical Simulation 
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The following M, C and K* matrices belong to a scale-down TSB which was actually built to be tested 
(De la Cruz et al., 2007; López-Almansa et al., 2011): 
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For this structure, the angular frequencies are: ωn1 = 13.0982 rad/s and ωn2 = 42.7447 rad/s. 
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The ground acceleration shown in Fig. 2.2 will be used as the external driving force for the numerical 
evaluation of the response. 
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Figure 2.2. Ground acceleration for the TSB of the example 
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3.1.1. Conversion of the MFR to a SB 
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The values of α and β were set equal to 0.55 and 1.20, respectively. With these values, and using the 
coefficients of matrices M and C, the following values for γ and ε were obtained: γ = 0.57539 and ε = 
1.21528. The matrices M’, K’ and C’ were found to be  
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For this ‘converted’ structure, the angular frequencies are: ω'n1 = 13.0811 rad/s and ω'n2 = 43.3512 
rad/s. 
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3.1.2. Displacement response using step-by-step algorithms 
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Using a numerical tool, such as ALMA (De la Cruz, 2004) or MS Excel®, it is possible to find the 
dynamic response of the TSB. In this case, the latter was used applying the well known linear 
acceleration method (Clough and Penzien, 2003). The time-history of the second-floor displacement is 
shown in Fig. 2.3 for the first 3 seconds.  
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In Fig. 2.3, the dotted line corresponds to the displacement response of the second floor of the original 
structure, with matrices M, C and K*, while the solid line corresponds to the displacement response of 
the second floor of the ‘converted’ structure, with matrices M’, C’ and K’. In this case, αβε2 is found 
to be equal to 0.975. As the value of αβε2 approaches to 1, there should be no difference between both 
responses. 
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Figure 2.3. Second floor responses for the MRF and SB models, subjected to the ground acceleration of Fig. 2.2 
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3.1.2. Displacement response using commercial software 
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The above data can be implemented rapidly into commercial software such as ADINA (Bathe, 1996). 
In ADINA, the viscous dampers and the springs (stiffness coefficients) can be entered as linear 
elements, making the modelling very simple (De la Cruz et al., 2009). Besides, the time-history 
response obtained with ADINA is equal to that obtained in subsection 3.1.2.  
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3.2. Shaking-table Tests 
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The SMM shown in Fig. 1.2c can be built so a physical model of an actual TSB (either SB or MRF) 



can be tested. Moreover, the nonlinear behaviour (e.g., bi-linear stiffness) can be simulated by using 
friction devices attached to the springs (De la Cruz et al., 2010). 
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4. CONCLUSIONS AND FUTURE RESEARCH 
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This paper presents a procedure to make spring-mass models as an option to analyze the dynamic 
behaviour of two-floor building structures in which the flexural rigidities of the beams, in addition to 
those of the columns, are considered. The procedure presented here consists in transforming the mass 
and stiffness matrices of the original structure. The main advantage of using this procedure is that any 
bi-dimensional two-story structure can be modelled as a spring-mass system; therefore, its dynamical 
analysis is easy to carry out using commercial software. Finally, it is important to notice that a 
nonlinear dynamic analysis can be made using the ‘equivalent’ spring-mass models, as described in 
this paper. For example, when dealing with nonlinear stiffness, this can be incorporated into the mass-
spring models by adding the necessary nonlinear spring elements on each mass. Finally, it is important 
to point out that currently the authors are working on the physical testing of the spring-mass models. 
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