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SUMMARY: 
An existing fiber model for the study of the failure mechanism of reinforced concrete sections with arbitrary 
shape in biaxial bending with axial force is extended for the computation of yield and failure surfaces of  RC 
sections when they are strengthened with RC jackets. In many nonlinear models for RC prismatic members the 
knowledge of the exact shape of those surfaces is critical for the needs of a reliable pushover analysis, where the 
plastic hinge formation is required for a given reinforced concrete framed structure. The procedure is based on 
an alternative fiber model which employees computer graphics as a computational tool for the integration of 
normal stresses over the section area. Thus, any numerical problems or large computer storage demands that are 
met in similar fiber models are fully eliminated. More over, the proposed fiber model can easily be incorporated 
into existing FEM codes for pushover nonlinear analysis. 
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1. INTRODUCTION 
 
The yield or failure surface of an arbitrary cross section in the axial load-bending moment components 
space N-My-Mz, can be defined as the geometrical locus of points (N,My,Mz) which correspond to the 
yield or ultimate strength (failure state) of the section, respectively. The result is closed surfaces which 
cannot be described by simple relationships of closed form, as those used for the classic orthogonal 
section (Fardis, 2009). These surfaces fully depend on the detailed section geometry, on the 
reinforcement amount and on the way it is placed inside the section. On the other hand, for the needs 
of nonlinear analysis, the detailed knowledge of those surfaces is extremely important since the plastic 
deformations of a structural element are functions of its load history and of the distance of its load 
vector from those surfaces. The problem becomes more complicated when the member sections are 
strengthened perimetrically with RC jackets, because of the existence of two different concrete quali-
ties and/or two different steel qualities plus the composite section geometry. In this case, it is obvious 
that only the use of pure fiber models or those which divide the section into parallel to the neutral axis 
strips can produce numerically the exact shape and size of yield and failure surfaces. Among the most 
representative models found in the literature, which belong to the above categories but for 
unstrenghthened sections, one can report those of Al-Noury and Chen (1982), Cheng-Tzu and Hsu 
(1985), Sousa Jr and Muniz (2007), Charalampakis and Koumousis (2008). 
In the present work, a fiber model based on computer graphics, which was initially developed by the 
author (Sfakianakis, 2002) for cross sections of arbitrary shape for the computation of the failure sur-
face, is extended for the case of computation of the yield surface too, as well as the full moment-cur-
vature diagrams considering or not a perimetrical RC jacket for the section. The original version of the 
model could handle the cases of orthogonal cross sections with or without jacket, cross sections of 
arbitrary shape but without jacket, and only for the computation of the failure surface. More over, the 
present version of the model incorporates significant algorithmic improvements which have to do with 
the fast computation of the neutral axis position in the section and the moment-curvature diagrams, for 
a specific value of the axial load N. Finally, representative examples are presented which show clearly 
the effectiveness of the model to produce accurate results for the section analysis either for the initial 
design or for seismic assessment of RC framed structures.  



2. GEOMETRICAL DEFINITIONS  
 
The initial cross section may be of arbitrary shape, convex or not. Perimetrically it is enclosed with a 
RC jacket of constant thickness tj. Fig. 1 shows the geometry of such a section with the assumed strain 
profile and the stress-strain diagrams for the materials. For each material, concrete or steel, it is assu-
med that there exist two different qualities. Also, it is assumed a common linear strain profile for all 
the materials. This means that the Euler-Bernouli assumption is considered to be valid, as well as that 
there is not any relative slip in the intercace between the two concretes. Notation C2, C1, S2 and S1 in 
Fig. 1 refers to the most outer concrete (C) and steel (S) vertices of the initial cross section, nor-mally 
to the neutral axis, which are in tension (1) and compression (2) state. For the jacket section the 
previous indices are replaced by the points C2J, C1J, S2J and S1J. 
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Figure 1. Section geometry, strain profile and material σ-ε diagrams. 

 
The concrete area of a section is divided into two separate areas, (a) that of the concrete cover outside 
of the stirrup and (b) to that of the core inside the stirrup. The reason is that the model takes into 
account different compressive strengths for the two areas, fc and fc

* respectively, where fc
* is the 

increased compressive strength due to confinement of the concrete by the stirrups. Fig. 2 shows the 
definition of the section core for an orthogonal cross section with and without jacket. According to 
various RC Codes (e.g. Eurocode 2, Greek EKOS-2000, FEMA 356, Greek KAN.EΠE. 2012, etc.) the 
core limits extend from the interior area of the section to the axis of the perimetric stirrup. Thus, for 
the orthogonal cross section of Fig. 2 without the jacket the core area is Aco = boho where                     
bo = b – 2c - h and ho = h – 2c - h. In these relations c and h are the clear concrete cover out of the 
stirrup and the stirrup diameter, respectively. Similarly, for the case with the section with jacket of 
thickness tj, and after the removement of the initial concrete cover c, the jacket core area is                
Acoj = bojhoj – Aco, with boj = b – 2cj - hj, hoj = h – 2cj - hj, where cj, hj are referred to the jacket, see 
Fig. 1. As mentioned before, the model assumes separate compressive strengths for cover and core 
areas. For the case of jacket it is able to assume a unique jacket core area of dimensions Acoj = bojhoj 
and compressive strength fcj

*, or two different cores Acoj = bojhoj – Aco and Aco = boho with compressive 
strengths fcj

* and fc
* respectively. In this point it is worthnoting that there are not any extensive 

experimental data to clarify which assumption is more valid. The second assumption is more 
conservative and is obvious that gives a little reduced bending strength of the section in comparison 
with the first one.  
The above geometrical definitions and the compressive strength assumptions, as mentioned for the 
orthogonal cross section, are valid for any arbitrary cross section shape. 
 
 
3. COMPUTER GRAPHIC FIBER MODEL 
 
The present fiber model uses computer graphics as a computational tool for the discretization of the 
cross section into fibers. More specific, the fibers are the pixel elements of the computer monitor. For  
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Figure 2. Core definition in an orthogonal section with and without jacket. 

 
this purpose the section is designed in the monitor with a desired scale using different color per each 
material (concrete or steel) and per each material area (concrete cover or core and steel of original 
section or that of the jacket). In this way the whole section is considered to consist of horizontal 
“ribbons” of pixels parallel to the graphic window horizontal axis, as shown in Fig. 3. 
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Figure 3. Sample of a pixel grid map of a section: (a) L section with jacket, and (b) magnified detail. 
 
As an example, consider the orientation of the L section of Fig. 3. The obtained color picture on the 
monitor is scanned (optical recognition) ribbon-by-ribbon retaining for each pixel its own color, for 
recognizing the kind of the material, and its coordinates (y,z) on the centroid Cartesian system Y-Z. 
The pixels of a specific ribbon have common z coordinate and are under the same strain value ε. 
Because of this fact, the square shape of the pixels and of their extreme small dimensions (e.g. 0.29 
mm for a 19” monitor with 12802024 resolution), they can be considered as almost dimensionless 
areas ( points) with the same stress value σ for each material. Hence, for each ribbon, during the 
scanning process, the position of the resultant force of each material is being computed simply by 



taking area moments about the Z axis. Finally, for each ribbon the y-coordinate of the resultant force 
of each material, the common z-coordinate and the number of pixels per material are kept in different 
one-dimensional arrays. In this way the overall cross section problem is reduced to a problem of 
concentrated points at specific locations (y,z) and specified stress σ, strain ε and area A. 
Τhe full yield or failure surfaces in the Cartesian space N-My-Mz of a section are constructed assuming 
all the possible values of the angle θ between the neutral axis and the Y centroidal axis in the range (0o, 
360o). It is obvious that the above optical recognition procedure requires the neutral axis to be always 
horizontal, so the section is rotated in angles of –θ in the above range at predefined steps dθ. The 
centroid system Y-Z takes a new orientation Y’-Z’, so the obtained (y,z) coordinates of each ribbon and 
material, must be transformed to (y’,z’). Fig. 4 shows the positions of the resultant forces for each 
horizontal pixel-ribbon and for each material for the L cross section of Fig. 3 for θ = 30o. 
 

             
 

         
 

Figure 4. Position of ribbon resultant forces for: (a) initial section concrete core, (b) jacket concrete core,          
    (c) jacket concrete cover, (d) initial section reinforcement, and (e) jacket reinforcement. 

 
From this point and on, for a specific location zn and angle θ of the neutral axis (see Fig. 3) and for an 
imposed value of curvature φ around the neutral axis, the internal section forces and moment compo-
nents can be easily computed by the known integrals which take the following form for the section pi-
xel fibers. 
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In the above relations indices c, co, s and j correspond to concrete cover, concrete core, steel and 
jacket, respectively, while r is the total number of pixel-ribbons of the section and n is the number of 
pixels of each ribbon. If A is the total area of the section, then the equivalent area of each pixel is dy2, 
with totdy A n  and ntot being the total number of color pixel-fibers of the section. Further computa-
tional details about the material stress-strain laws σ(ε) can be found in Sfakianakis (2002). 
 
 
4. CONSTRUCTION OF YIELD AND FAILURE SURFACES 
 
The construction of the yield or failure surface by the present fiber model consists of the computation-
nal steps described below. All geometric parameters are shown in Fig. 1. 
 
Step 1. 
Selection of the yield or failure criterion. For this purpose we choose as control fibers the pairs (εc2,εs1) 
or (εc2o,εs1). The first one corresponds to yield or failure of the most outer compressive concrete fiber 
of the section in relation to the yield or failure of the most outer reinforcement bar which is in most 
tension condition. The yield or failure state is defined when at least one of the two fibers of the 
selected pair reaches first its strain limit ε, as it is defined by the RC Codes. The second pair works 
exactly as the first one but the concrete control fiber is that of the jacket core. 
For the yield surface the corresponding strain limits for the two pairs are (εcy,εsy), which are the yield 
strains for concrete and steel, respectively. For the failure surface the strain limits are (εcu,εsu) which 
are defined as the strains at the ultimate strength of each material. 
 
Step 2. 
Since the surfaces are constructed meridian by meridian, we choose the angle θ of a specific meridian 
from the range (0o,360o) using predefined steps dθ. It is noted that in general the meridians are not 
plane. In other words θn  tan-1(Mz/My). This is due to secondary moments that may occur about an 
axis which is perpendicular to the neutral axis, and passes through the origin of the section Cartesian 
system Y-Z. These secondary moments about this axis may happen because of possible variations of 
concrete and/or steel stresses from both sides of the axis. As will be shown clearly in the examples, 
this variation depends on the unsymmetry of the cross section and on any unsymmetric distribution of 
the longitudinal reinforcement bars too. 
A second data that must be selected is the axial load range for which the meridian will be computed 
step by step, as well as the axial load increment dN, so that Nk+1 = Nk + dN. The full meridian 
corresponds to axial load limits N+ and N- as defined by the RC Codes. 
 
Step 3. 
For a specific value of an external axial load Nk, applied on the section, define two adjacent neutral 
axis positions zn,1 and zn,2 , and corresponding curvatures φ1 and φ2, which give internal axial load 
values Nint,1 and Nint,2 such as Nint,1 ≤ Nk ≤ Nint,2. These values must correspond to yield or failure of at 
least one fiber of the selected control fibers of step 1. Thus, for determining value Nint,1, set εc2 = εcy or 
εcu for yield or failure state, respectively, and εs1 = εsy or εsu. From this strain profile compute zn,1 and φ1 
and from Eqn. (3.1) the internal axial load value Nint,1. After this, keep εc2 constant and compute Nint,2 
changing only the values of zn or φ, until finding a pair (zn,2,φ2) for which Nk ≤ Nint,2. The procedure is 
repeated by successive bisections of the range (Nint,1,Nint,2) until Nint,1 = Nk or Nint,2 = Nk. In this way the 
yield or failure of the section occurs when the most extreme compressive concrete fiber reaches first 



its limit value εc2 = εcy or εcu, for yield or failure respectively, while the strain of the most outer bar in 
tension is still εs1 ≤ εsy or εsu. 
On the other hand, the increase or decrease for first time the values of zn or φ, leads to Nint,2 ≤ Nint,1 ≤ Nk 
or Nk ≤ Nint,1 ≤ Nint,2, then the procedure must start from the beginning keeping εs1 = εsy or εsu constant, 
and changing εc2 through the change of zn or φ. This is the case where the yield or failure of the section 
occurs when the strain of the most outer bar in tension reaches first its limit value εs1 = εsy or εsu, 
respectively, while the strain of the most extreme compressive concrete fiber is still εc2 ≤ εcy or εcu. 
 
Step 4. 
For the strain profile of step 3, which fulfills the condition Nk = Nint, using Eqn. (3.2) and (3.3) compu-
te the moments components My and Mz. 
 
Step 5. 
Repeat steps 3 and 4 for the next value of axial load, Nk+1, from its desired range as defined in step 2. 
 
Step 6. 
Repeat steps 2 to 5 for the next value of angle θ, from its desired range as defined in step 2. 
 
Referring to step 3, the above procedure can be significantly accelerated for a next value of the axial 
load Nk+1, if keep as (Nint,1,zn,1,φ1) the values for which convergence occurred for the current value Nk. 
In a similar way, as increments of dzn,2, or dφ2 for finding Nint,2, one can use those of the current value 
Nk as a good initial approximation. In this way the range (Nint,1,Nint,2) is the smallest one, which in turn 
needs the less number of bisections until finding Nk+1, and so on. 
The above modifications have been incorporated in a new version of the BIAX software, which was 
originally developed for the present graphics fiber model. Similar algorithmic improvements, the 
description of which is beyond the aim of this paper, have been made for the construction of the 
moment-curvature diagrams M-φ. 
 
 
5. NUMERICAL EXAMPLES 
 
5.1. Example 1 
 
This example concerns the L-shaped column section of Fig. 5, with a constant jacket thickness tj = 94 
mm measured from the axis of the stirrup of the initial section. The initial section was designed by the 
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Figure 5. RC L-shaped section with jacket (dimensions in mm). 



Οld Greek National Code for Seismic Actions (1959) and it refers to a column section of a 3-story 
building. The strengthening of the section with RC jacket comes from the need of adding two more 
stories to the building. The material properties and safety factors used for the two sections of Fig. 5 are 
summarised in table 1 and correspond to design procedure according to Eurocode 2. 
 
Table 5.1. Material properties and safety factors for the L-shaped sections of Fig. 5. 

Section fc 
(MPa) βc γc εco εcu z αωw Es 

(GPa) 
fy 

(MPa) γs εsu 

Initial 12 0.85 1.50 -0.002 -0.0035 0 0 200 220 1.15 0.020 
Jacket 20 0.85 1.50 -0.002 -0.0035 0 0 200 500 1.15 0.020 

 
In the above table, z is the slope of the descenting branch of the concrete σ-ε law, which for design 
purposes is zero. Product α times ωw expresses the confinement of the section core(s) by the stirrups. 
In this example this effect is neglected. The present graphics fiber model is used to produce the 
complete yield and failure surfaces of these sections using increments Δθn = 15o for the rotation of the 
neutral axis. Fig. 6 and 7 shows these surfaces, in the normalized space ν-μy-μz, constructed meridian 
by meridian for the initial section and for that with the jacket, respectively. From the perspective views 
of these figures, the effect of the secondary moments, as they defined previously, is obvious since it 
gives non planar meridians.   
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Figure 6. Yield and Failure surfaces of initial section: (a) Yield, (b) Failure, and (c) both, enclosed. 
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Figure 7. Yield and Failure surfaces of section with jacket: (a) Yield, (b) Failure, and (c) both, enclosed. 
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Notice that the surfaces of section with jacket are nonconvex in various regions. Fig. 8(a) shows 
clearly this property by presenting normalized values of isoload contours of the above surfaces in the 
tension range ν = (0.00,+0.20). Moreover, Fig. 8(b) shows that the surface meridians corresponding to 
neutral axis angle θ = 45o are not planar because of the difference between angles α = tan-1(μz/μy) and θ 
(secondary moments effect). 
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Figure 8. (a) Surface equators, and (b) moment component angle for θ = 45o. 
 
5.2. Example 2 
 
In this example the yield and failure surfaces are constructed for the nonsymmetric T-shaped column 
section of Fig. 9, with a constant jacket thickness tj = 69 mm measured from the axis of the stirrups of 
the initial section. The initial column section belongs to the same building of example 1. The surfaces 
are constructed using the (εc2o,εs1) criterion for yield and failure, unity safety factors and mean strength 
values for the materials. Table 5.2 summarizes the material properties and safety factors for the two 
sections of Fig. 9. 
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Figure 9. RC T-shaped section with jacket (dimensions in mm). 
 

Table 5.2. Material properties and safety factors for the T-shaped sections of Fig. 9. 

Section fc 
(MPa) βc γc εco εcu z z* αωw Es 

(GPa) 
fy 

(MPa) γs εsu 

Initial 14 1.00 1.00 -0.002 -0.0035 -100 -57.80 0.02 200 220 1.00 0.018 
Jacket 22 1.00 1.00 -0.002 -0.0035 -100 -44.73 0.04 200 500 1.00 0.035 

(a) (b) 



In the above table, z* is the slope of the descenting branch of the confined concrete σ-ε law. It is 
reminded that the criterion (εc2o,εs1), which is used in the present analysis, corresponds to the 
yield or failure of the section core. For the case of jacket it is the jacket core. This means that 
the clear concrete cover of the jacket has been extensively cracked in the yield state or it has 
been completely removed in the failure state. This is the reason why the failure surface does 
not completely include the yield surface, as can be seen in Fig. 10(c). Fig. 10(d) shows both 
surfaces to be fully enclosed if the (εc2,εs1), criterion is used. Fig. 11 shows similar results for 
the case of the initial section. 
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Figure 10. Yield and Failure surfaces of section with jacket: (a) Yield, (b) Failure, (c) and (d) both, enclosed. 
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Figure 11. Yield and Failure surfaces of the initial section: (a) Yield, (b) Failure, (c) and (d) both, enclosed. 
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Figure 12. Normalized moment-curvature diagrams for section with jacket. 
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For all the analyses, the increase of the concrete compressive strength due to confinement has 
been taken into account by means of the product αωw, according to Eurocode 2. 
Fig. 12 shows the full moment curvature diagrams for θ = 180o and ν = 0.00, -0.10, -0.20 for both 
criteria, as they were computed by the model. From these diagrams it is obvious that the size of the 
failure surface depends on how the final failure is defined, i.e. taking as criterion the concrete cover 
spalling or the failure of the section core. For purposes of seismic assessment, the second one is more 
reliable since it affects the real condition of a prismatic RC element. 
 
 
6. CONCLUSIONS 
 
The present graphic fiber model can analyze any cross sectional shape including the case of composite 
sections, sections with reinforced concrete jackets and sections with openings. It can incorporate 
various yield or failure criteria for a RC section, according to the desired purpose. Moreover, one can 
use any other modified of the stress-strain laws for steel and concrete. Its computer implementation is 
quite simple so it can be incorporated as a reliable computational tool in any open FEM code. Because 
of these advantages, it can be successfully used for both the nonlinear analysis of structures, either for 
design purposes or for seismic assessment and retrofitting of RC structures. Its generality makes it 
capable for computing more reliably and accurately various parameters needed in nonlinear models, 
for cases of sections other than the classic orthogonal. In this point it must be noted that for nonclassic 
section geometries, the use of analytic relations for orthogonal sections is not always a good appro-
ximation, so the present computational tool can fill this gap with quite success.   
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