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SUMMARY:  
This study investigates the effect of the impulsive nature of near-fault ground motions on the rocking response of 
base-isolated rigid blocks. Two models of seismic-isolation system are considered in the analysis, namely a 
linear model with viscoelastic behavior and a nonlinear model with hysteretic behavior. The response of the 
system is calculated for both recorded ground motions and simulated pulse-type motions. An extensive 
numerical investigation is carried out for a class of rigid blocks with different geometric characteristics, in terms 
of the slenderness ratio (λ) and size of the block (r), for both isolated and non-isolated blocks. The comparison of 
results between the rocking response of isolated and non-isolated blocks demonstrates the benefits of the 
isolation method: for the case of the isolated block, the initiation of rocking (uplift) is shifted towards higher 
values of slenderness ratio λ, while the instability region (overturning) in the λ-r space is generally reduced. 
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1. INTRODUCTION 
 
Following Housner’s landmark study (Housner 1963), numerous studies (e.g. Yim et al. 1980, 
Ishiyama 1982, Spanos & Koh 1984, Shenton III & Jones 1991, Makris & Roussos 2000) have been 
reported in the literature dealing with the seismic behavior of a rigid block standing free on the 
horizontally-moving ground.  
 
More recently, motivated primarily by the need to mitigate the seismic risk of objects of cultural 
heritage, studies on the rocking response of a rigid block with its base seismically isolated have been 
pursued (e.g. Vestroni & Di Cintio 2000, Caliò & Marletta 2003, Roussis et al. 2008, Contento & Di 
Egidio 2009, Vassiliou & Makris 2012).  
 
This paper focuses on the nonlinear rocking response of rigid blocks free-standing on a seismically-
isolated base, subjected to near-field ground motions. Near-field ground motions are typically 
characterized by intense velocity and displacement pulses of relatively long period that clearly 
distinguish them from typical far-field ground motions. The response of the system is calculated for 
both recorded (historic) ground motions and simulated pulse-type motions. In particular, the 
sophisticated analytical model of Mavroeidis & Papageorgiou (2003) has been adopted in this study in 
representing the near-field strong ground motions by closed-form mathematical expressions. The 
model adequately describes the nature of the impulsive near-fault ground motions both qualitatively 
and quantitatively. 
 
The system analyzed is modeled by a rigid block standing free on a seismically-isolated base. Two 
models of the seismic-isolation system are considered in the analysis: (a) a linear model with 
viscoelastic behavior, and (b) a nonlinear model with hysteretic behavior. Upon presenting in brief the 
mathematical formulation of the problem (based on Roussis et al. 2008), this study focuses on an 



extensive numerical investigation for a class of rigid blocks (both isolated and non-isolated) with 
different geometric characteristics, with the aim of investigating the effect of seismic isolation on the 
system dynamic behavior under near-fault ground motions, both recorded and simulated pulse-type 
motions. 
 
 
2. ANALYTICAL MODEL 
 
2.1. System Description 
 
The system analyzed is modeled by a symmetric rigid block, of mass m and centroid mass moment of 
inertia I, standing free on a seismically-isolated base of mass mb (Fig. 2.1). The rigid block of height H 
= 2h and width B = 2b is assumed to rotate about the corners O  and 'O . The distance between one 
corner of its base and the mass center is denoted by r and the angle measured between r and the 
vertical when the body is at rest is denoted by α, where α = tan-1(b / h). Two models of the seismic-
isolation system are considered in the analysis: (a) a linear model with viscoelastic behavior, and (b) a 
nonlinear model with hysteretic behavior. 
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Figure 2.1. Model at rest and oscillation patterns. 
 

The dynamic response of the system is realized through two distinct oscillation patterns; the one 
permitting the base-block system to translate as a whole, herein referred to as “pure translation” (Fig. 
2.1b), and the other permitting the block to pivot on its edges with respect to the horizontally-moving 
base, referred to as “rocking” (Fig. 2.1c). Sliding of the block relative to the supporting base is not 
considered.  
 
2.2. Equations of Motion  
 
When subjected to ground acceleration gx , the supporting base will oscillate in the horizontal 
direction with a displacement u(t) relative to the foundation. The rigid block will be set into rocking on 
top of the moving base when 
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2.2.1. Linear Isolation System 
 
The single equation of motion of the system in the pure-translation oscillation pattern is given by 
 

( ) ( )b b gm m u cu ku m m x+ + + = − +    (2.2) 



and the equations of motion of the system in the rocking oscillation pattern by 
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in which u(t) denotes the horizontal displacement of the base relative to the ground, θ(t) the angular 
rotation of the block (positive in the clockwise direction), and sgnθ  the signum function in θ .  
 
2.2.2. Nonlinear Isolation System 
 
The constitutive model of isolation systems modeled as elements that exhibit bilinear hysteretic 
behavior can be described by the Bouc-Wen model. According to this model, the restoring force in a 
hysteretic system is given by 
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where, K is the second slope of the bilinear model, Q  is the strength of the system, α is the ratio of 
post-yield to pre-yield elastic stiffness, yF  is the yield force, Y  is the  yield displacement, u  is the 
displacement, and 


 is a hysteretic dimensional variable governed by the following differential 

equation:  
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where, ,  ,  ,  A γ β η  are dimensionless quantities that control the shape of the hysteresis loop, with 
assigned values: A = 1, γ = 0.9, β = 0.1, η = 2, Υ = 0.5mm (Constantinou et al. 1990). 
 
To investigate the response of isolated rigid blocks with isolation systems described by bilinear 
hysteretic behavior under impulsive motions, this study concentrates on the friction-pendulum system 
(FPS), case for which the restoring force Κ = (m + mb )g/R and the friction force Q = μ(m + mb )g. 
 
Pure-translation regime 
 
The equation of motion of the system in the pure-translation regime is given by 
 

( ) ( )b b gm m u Q Ku m m x+ + + = − +   (2.7) 
 
which for the case of the FPS can be can be recast in the form  
 

( ) ( ) ( )( )( ) ( )b b b b gm m u g m m m m g R u m m x+ + + + + = − + µ   (2.8) 
 
Rocking regime 
 
The set of equations of motion governing the rocking regime of the system is derived as 
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which for the case of  the FPS can be can be recast in the form  
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Evidently, the coupled equations governing the rocking regime are highly nonlinear and not amenable 
to closed-form solution, even for the simplest form of ground excitation. Note that Eqns (2.3),  (2.4), 
(2.9) and (2.10) hold only in the absence of impact ( 0≠θ ). At that instant, both corner points O  and 

'O  are in contact with the base, rendering the above formulation invalid.  
 
2.3. Impact Model 
 
The mathematical formulation of impact has been originally published by Roussis et al. (2008) in a 
paper that resolved the issue of conservation of linear momentum of the system during impact between 
the rocking block and its supporting base. The findings of that paper with respect to the treatment of 
the impact event are summarized below. 
 
The dynamic response of the system is strongly affected by the occurrence of impact(s) between the 
block and the horizontally-moving base. That is, impact causes the system to switch from one 
oscillation pattern to another (potentially modifying the degrees of freedom), each one governed by a 
different set of differential equations. In addition, the integration of equations of motion governing the 
post-impact pattern must account for the ensuing instantaneous change of the system’s velocity 
regime.  
 
A model governing impact was derived from first principles using classical impact theory. According 
to the principle of impulse and momentum, the duration of impact is assumed short and the impulsive 
forces are assumed large relative to other forces in the system. Changes in position and orientation are 
neglected, and changes in velocity are considered instantaneous. Moreover, this model assumes a 
point-impact, zero coefficient of restitution (perfectly inelastic impact), impulses acting only at the 
impacting corner (impulses at the rotating corner are small compared to those at the impacting corner 
and are neglected), and sufficient friction to prevent sliding of the block during impact. 
 
Under the assumption of perfectly inelastic impact, there are only two possible response mechanisms 
following impact: (a) rocking about the impacting corner when the block re-uplifts (no bouncing), or 
(b) pure translation when the block’s rocking motion ceases after impact. The formulation of impact is 
divided into three phases: pre-impact, impact, and post-impact as illustrated schematically in Fig. 2.2. 
The impact analysis is reduced to the computation of the initial conditions for the post-impact motion, 
u+
 and +

θ , given the position and the pre-impact velocities, u−
  and −

θ . 
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Figure 2.2. Impact from rocking about O  followed by (a) re-uplift about 'O  and (b) termination of rocking. 
 
In the case when the block hits the moving base from rocking about O  ( 'O ) and re-uplifts pivoting 
about the impacting corner 'O  ( O ), the post-impact velocities in terms of their pre-impact 
counterparts are given by 
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in which h b=λ  is the geometric aspect ratio and bm m m=  is the mass ratio. 
 
In the case when rocking of the block on top of the moving base ceases, the system will attain a pure-
translation regime. In this case, the post-impact translational velocity of the system, u+

 , in terms of 
the pre-impact velocities, u−

  and −
θ is given by 
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3. NEAR-FAULT GROUND MOTIONS 
 
A wide range of near-fault seismic ground motions were chosen as input in the analysis of the rocking 
response of the system. Near-field ground motions are typically characterized by intense velocity and 
displacement pulses of relatively long period that clearly distinguish them from typical far-field 
ground motions. The response of the system is calculated for both recorded (historic) ground motions 
and simulated pulse-type motions. In particular, the sophisticated analytical model of Mavroeidis & 
Papageorgiou (2003) has been adopted in this study in representing the near-field strong ground 
motions by closed-form mathematical expressions. The model adequately describes the nature of the 
impulsive near-fault ground motions both qualitatively and quantitatively. 
 



The mathematical representation of ground acceleration for near-fault ground motions, as proposed by 
Mavroeidis & Papageorgiou (2003), is 
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where, Tp is the pulse duration, equal to the inverse of the prevailing frequency (fp); γ is a parameter 
that defines the oscillatory character; A  controls the amplitude of the signal; ν is the phase of the 
amplitude-modulated harmonic; and t0 specifies the epoch of the envelope’s peak. 
 
Table 3.1 lists the characteristics of the recorded near-fault ground motions, together with the model 
input parameters associated with the idealized pulses, used for the dynamic analysis.  
 
Table 3.1. Characteristics of recorded near-fault ground motions and model input parameters for the idealized 
pulses (Mavroeidis and Papageorgiou (2003)) 

No. Location Station / 
Comp. Mw Dist.   

(km) 
PGV 

(cm/sec) A γ ν(ο) fp (Hz) 

1 Parkfield, CA, USA C02/SN 6.20 0.1 75.1 60.0 1.700 100.0 0.500 
2 San Fernando, CA, USA PCD/SN 6.55 3.0 120.0 115.0 1.600 180.0 0.680 
3 Bucharest, Romania BRI/SN 7.27 190.0 74.9 62.0 2.400 200.0 0.470 
4 Tabas, Iran TAB/SP 7.11 1.2 122.0 104.0 2.200 180.0 0.190 
5 Imperial Valley, CA, USA E04/SN 6.50 6.0 78.3 71.0 1.900 305.0 0.225 
  E05/SN 6.50 2.7 91.8 84.0 1.900 300.0 0.255 
  E06/SN 6.50 0.3 112.0 96.0 2.100 265.0 0.260 
  E07/SN 6.50 1.8 109.0 79.0 2.100 25.0 0.275 
  EMO/SN 6.50 1.2 115.0 78.0 2.300 0.0 0.340 

6 Northridge, CA, USA JFA/SN 6.70 5.2 105.0 87.0 2.300 100.0 0.330 
  RRS/SN 6.70 6.0 173.0 142.0 1.700 20.0 0.800 
  SCG/SN 6.70 5.1 134.0 93.0 2.500 0.0 0.340 
  SCH/SN 6.70 5.0 122.0 80.0 2.300 0.0 0.330 
  NWS/SN 6.70 5.3 117.0 94.0 1.700 200.0 0.370 

7 Aigion, Greece AEG/Lon
 

6.33 6.0 40.9 44.5 1.450 75.0 1.400 
  AEG/Tran 6.33 6.0 52.0 61.0 1.200 205.0 1.480 

8 Izmit, Turkey ARC/SN 7.40 14.0 44.3 41.0 1.380 225.0 0.140 
  SKR/SP 7.40 3.1 80.3 67.0 1.023 5.0 0.105 
  GBZ/SN 7.40 11.0 41.4 34.5 2.200 220.0 0.210 
  GBZ/SP 7.40 11.0 28.7 28.0 1.800 85.0 0.165 

 
 
4. NUMERICAL RESULTS 
 
The numerical integration of the equations of motion has been pursued in Matlab (MathWorks 2006)  
through a state-space formulation. The computer program calculates numerically the response of an 
isolated block subjected to ground excitation under general conditions, considering the different 
possible oscillation patterns, impact, and arbitrary excitation. In particular, at each time step the 
program determines the correct oscillation pattern and integrates the corresponding exact highly 
nonlinear equations of motion. In each time step, close attention is paid to the possibility of transition 



from one pattern of motion to another and to the accurate evaluation of the initial conditions for the 
next pattern of oscillation, on the basis of the developed impact model. 
 
This section presents an extensive numerical investigation for a class of rigid blocks (both isolated and 
non-isolated) with different geometric characteristics, in terms of the slenderness ratio (λ) and size 
(half-diameter) of the block (r), with the aim of investigating the effect of seismic isolation on the 
system dynamic behavior under near-fault ground motions, both recorded and simulated pulse-type 
motions (Table 3.1). Two models of the seismic-isolation system are considered in the analysis: (a) a 
linear model with viscoelastic behavior, and (b) a nonlinear model with hysteretic behavior. 
 
Figs.  4.1 through 4.4 report results in the form of behavior maps for a wide range of isolated and non-
isolated rigid blocks under recorded near-fault ground motions. A total of 2,440 nonlinear dynamic 
analyses were performed in constructing each behavior map. Each dot in these maps represents the 
outcome of a single analysis. The blue circles indicate “No Rocking”, the green “Rocking”, and the 
red circles “Overturning” of the block. The comparison between the two maps reveals the benefits of 
the isolation method. Evidently, for the case of the isolated block, the initiation of rocking (boundary 
between the blue and green areas) is shifted towards higher values of slenderness ratio λ and the 
instability region (indicated in red) is generally reduced. 
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Figure 4.1. Behavior maps for a class of rigid blocks under the SN component of 1971 San Fernando, CA 
earthquake (𝑚�  = 0.5, Ts = 2 s, ξ = 35%). 
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Figure 4.2. Behavior maps for a class of rigid blocks under the SP component of 1978 Tabas, Iran earthquake 
(𝑚�  = 0.5, Ts = 2 s, ξ = 35%). 
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Figure 4.3. Behavior maps for a class of rigid blocks under the SN component of 1979 Imperial Valley E05 
earthquake (𝑚�  = 0.5, Ts = 2 s, ξ = 35%). 
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Figure 4.4.  Behavior maps for a class of rigid blocks under the SN component of 1994 Northridge, CA, JFA 
earthquake (𝑚�  = 0.5, Ts = 2 s, ξ = 35%). 

 
Fig. 4.5 reports results in the form of behavior maps for a wide range of rigid blocks on linear and 
nonlinear isolation systems under the SN component of 1994 Northridge, CA, JFA earthquake. As 
demonstrated in these maps, the dynamic behavior of the block for the two types of seismic isolation is 
similar, with the initiation of rocking (boundary between the blue and green areas) not affected. 
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Figure 4.5. Behavior maps for a class of rigid blocks under the SN component of 1994 Northridge, CA, JFA 
earthquake (𝑚�  = 0.5, Ts = 2 s, ξ = 35%, μ = 0.11, R = 2.24 m). 



Fig. 4.6 presents results from the dynamic behavior of isolated rigid blocks under the SN component 
of 1977 Bucharest, Romania earthquake and its pulse-type idealization. As seen from the ground 
acceleration time histories, the ground-motion model adequately describes the nature of the impulsive 
near-fault ground motions both qualitatively and quantitatively. Evidently, the response of the system 
under the recorded and simulated ground motions is comparable.  
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Figure 4.6. Behavior maps for a class of rigid blocks under the SN component of 1977 Bucharest, Romania 
earthquake and its pulse-type representation (𝑚�  = 0.5, Ts = 2 s, ξ = 35%). 

 
 
5. CONCLUSIONS 
 
This study investigates the effect of the impulsive nature of near-fault ground motions on the rocking 
response of base-isolated free-standing rigid blocks. The response of the system is calculated for both 
recorded (historic) ground motions and simulated pulse-type motions. An extensive numerical 
investigation is carried out for a class of rigid blocks with different geometric characteristics, in terms 
of the slenderness ratio (λ) and size (half-diameter) of the block (r), for both isolated and non-isolated 
blocks. Two models of the seismic-isolation system are considered in the analysis, namely a linear 
model with viscoelastic behavior and a nonlinear model with hysteretic behavior. 
 
The comparison of results between the rocking response of the two cases (isolated and non-isolated 
block) demonstrates the benefits of the isolation method: for the case of the isolated block, the 
initiation of rocking (uplift) is shifted towards higher values of slenderness ratio λ, while the instability 
region (overturning) in the λ-r space is generally reduced. 
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