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SUMMARY:  

This paper presents the results of an experimental and numerical analysis developed to study the non-linear 

hysteretic behavior of MR dampers. In the first section a brief review of the numerical models available to 

simulate their behavior will be presented. To obtain and analyze the hysteretic behavior of MR dampers, a device 

was experimentally tested under several input excitations. Based on the experimental results an identification 

procedure was carried out to determine the parameters that are necessary to develop a numerical model. Finally, 

results from experimental investigations and numerical analyses are summarized and compared. 
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1. INTRODUCTION 

 

MR dampers are semi-active devices that can achieve high-level controllable forces and better 

performance than passive systems although preserving the performance reliability of passive devices 

and with low energy requirements. However, the highly nonlinear behavior of a MR Damper related 

with its semi-active nature increases the level of complexity of the behavior numerical modeling, 

especially when parametric models are used.  

 

In the present paper is presented the experimental testing and numerical modeling of the RD-1005-3 

MR damper manufactured by Lord Corporation. To predict the behavior of the MR damper, it is 

necessary to use a numerical procedure capable to capture its non-linear hysteretic response. However, 

some experimental data are needed to calibrate and validate the numerical response for a specific MR 

damper. The usual approach to determine the MR damper behavior involves measuring the MR 

damper response at a constant operating current level (or voltage) under a sinusoidal displacement of 

the damper piston. Hence, an experimental study was carried out under different current magnitudes, 

frequencies and amplitudes of excitation in order to characterize the MR damper response. The 

experimental data will be presented and analyzed and will be used to identify the model parameters 

that are required to develop some parametric models for this device. These models must predict the 

experimental nonlinear hysteretic response of the MR damper in the whole operating range to allow 

developing an accurate numerical model.  

 

 

2. NUMERICAL MODELS 

 

To use the MR damper as a controllable semi-active device into a control system it is essential that the 

selected numerical model can capture its non-linear behavior in order to develop a feasible semi-active 

controller. Many mathematical models have been developed to describe such behavior and to take 

advantage of the MR properties of these devices in vibration control related problems, it is necessary 

to select and implement high-accuracy models capable to capture their non-linear hysteretic response.  

 



Among the modeling techniques, parametric models appear to be an easy and reliable approach to 

obtain a mathematical model of the physical MR damper. Several numerical models are available to 

predict the response of MR dampers. Table 2.1 presents a brief description of the available models for 

MR dampers. Among these, the Bingham model, the Bouc-Wen and the Modified Bouc-Wen models 

are some of the most common models utilized to predict the MR damper behavior. 

 
Table 2.1. MR dampers Models classification 

Modelling technique MR damper Models 

Bingham models 

- Original Bingham model 

- Modified Bingham model 

- Gamota and Filisko model 

- Updated Bingham model by Occhiuzzi et al. 

- Three-element model by Powell 

Bi-viscous models 

- Nonlinear bi-viscous model 

- Nonlinear hysteretic bi-viscous model 

- Nonlinear hysteretic arctangent model 

- Lumped parameter bi-viscous model 

Visco-elastic-plastic models 
- General visco-elastic-plastic models 

- Visco-elastic-plastic model by Li et al 

Stiffness-viscosity-elasto-slide model - Stiffness-viscosity-elasto-slide (SVES) model 

Hydro-mechanical model - Hydro-mechanical model 

Maxwell models 
- BingMax model by Makris et al. 

- Maxwell Nonlinear Slider model 

Bouc-Wen models 

- Simple Bouc-Wen model 

- Modified Bouc-Wen model 

- Bouc-Wen model for shear mode dampers 

- Bouc-Wen model for large-scale dampers 

- Current dependent Bouc-Wen model 

- Current-frequency-amplitude dependent Bouc-Wen 

- Non-symmetrical Bouc-Wen model 

Dahl models 
- Modified Dahl model 

- Viscous Dahl model 

LuGre models 
- Modified LuGre model by Jimenez and Alvarez 

- Modified LuGre model by Sakai et al 

Hyperbolic tangent models - Hyperbolic tangent model by Kwok et al 

Sigmoid models - Sigmoid model by Wang et al and Ma et al 

Equivalent models - Equivalent model by Oh and Onoda 

Phase transition models - Phase transition model 

 

2.1. Bingham model 

 

Stanway et al (1987) proposed a mechanical model based on the Bingham plastic model to 

characterize the ER damping mechanism. This model is known as the Bingham model and combines a 

Coulomb friction element in parallel with a viscous dashpot as shown in Fig. 2.1. 

 

 
 

Figure 2.1. Bingham model for MR dampers 
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Figure12. Bingham model for MR dampers: (a) a Coulomb friction element in parallel with a viscous dashpot [28] and (b) the piecewise

continuous model for MR dampers [93].

2. Bingham model-based dynamic models

2.1. Bingham model

In order to characterize the electrorheological (ER) damping

mechanism, Stanway et al [126] proposed a mechanical model,

commonly referred to as the Bingham plastic model, that

combines a Coulomb friction element in parallel with a viscous

dashpot, as shown in figure 12(a). The nonlinear Bingham

plastic model can also be used to model the damping force for

MR dampers. According to figure 12(a), the force generated

by the MR dampers is given by

F(t) = c0 ẋ + fcsgn(ẋ) + f0 (9)

where ẋ denotes the velocity attributed to the external

excitation, c0 is the damping coefficient, fc is the frictional

force related to the field-dependent yield stress and f0 is the

offset in the force included to account for the nonzero mean

observed in the measured force due to the presence of the

accumulator [28].

The Bingham behaviour of an MR damper can also be

derived from the Bingham plastic model for MR fluids given

by equation (1) through the study of an axisymmetric model of

the MR fluid flow [30].

Wereley et al [93] proposed a piecewise Bingham model

as shown in figure 12(b) and the equations describing the

damper model are [93, 106, 108]

F(t) =

Cpostẋ + Fy, ẋ > 0

− Fy < F(t) < Fy, ẋ = 0

Cpostẋ − Fy, ẋ < 0

(10)

where Cpost represents the post-yield damping and Fy

represents the yield force.

The Bingham plastic model for MR dampers given by

equation (10) is often expressed as

F(t) = Cpostẋ + Fysgn(ẋ). (11)

If Cpost = c0 and Fy = fc, equations (10) and (11) are the same

as equation (9).

The model given by equation (10) assumes that, in the pre-

yield condition, the material is rigid and does not flow; hence,

when |F(t)| < Fy, the shaft velocity ẋ = 0. Once the force

applied to the damper exceeds the yield force, then the fluid

begins to flow and the material is essentially a Newtonian fluid

with a nonzero yield stress, as shown in figure 12(b). In this

constitutive model, the yield force is obtained from the post-

yield force versus velocity asymptote intercept with the force

axis, as shown in figure 12(b).

The Bingham model accounts for MR fluid behaviour

beyond the yield point, i.e. for fully developed fluid flow or

sufficiently high shear rates. However, it assumes that the

fluid remains rigid in the pre-yield region. Thus, the Bingham

model does not describe the fluid elastic properties at small

deformations and low shear rates, which are necessary for

dynamic applications [113].

Considering that the width of the hysteretic loop with

the Bingham model is relatively narrow, Weng et al [127]

constructed a more complicated model to represent the wider

hysteretic loop and the updated model is as follows:

F(t) = c0 ẋ +
2

π
fc arctan{kH[ ẋ − ẋHsgn(ẍ)]} + f0 (12)

where kH and xH are respectively the shape coefficient and the

hysteretic velocity, which are functions of the applied current

I to the winding, and ẍ is the input acceleration of the piston

in the damper.

2.2. Modified Bingham model

The modified Bingham model is shown in figure 13 and the

governing equation is given by [103]

F(t) = c0ẋ1 + fcsgn(ẋ1) + f0

= k1(x − x1) + f0. (13)

2.3. Extension I of the Bingham model

Figure 14 is the schematic of an extension of the Bingham

model, which is proposed by Gamota and Filisko [105] when

predicting the behaviour of ER materials and was used to
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Form the equilibrium of the mechanical element configuration the force generated by the MR dampers 

can be expressed as 

 

 ( )     ̇       ( ̇)     (2.1) 

 

where  ̇ is the velocity of the external excitation, c0 is the damping coefficient, fc is the frictional force 

and f0 is the force offset related with the presence of an accumulator. 

 

2.2. Bouc-Wen model 

 

The simple Bouc-Wen model has three components: a spring, a dashpot and a Bouc-Wen block, in a 

parallel configuration as shown in Fig. 2.2.  

 

 
 

Figure 2.2. Simple Bouc-Wen model for MR dampers 

 

According to the mechanical configuration shown in Fig. 2.2, the damping force is given by 

 

 ( )     ̇    (    )     (2.2) 

 

where c0 is the viscous coefficient, k0 the stiffness coefficient and z is an evolutionary variable 

associated with the Bouc-Wen block and governed by 

 

 ̇    | ̇| | |      ̇| |    ̇ (2.3) 

 

The parameters c0, k0, α, β, γ, n and A are usually called characteristic or shape parameters of the 

Bouc–Wen model and are functions of the current, amplitude and frequency of excitation.  

 

2.3. Modified Bouc-Wen model 

 

The modified Bouc-Wen model combines a simple Bouc-Wen block with two new mechanical 

components (a spring and a dashpot) as shown in Fig. 2.3. 

 

 
 

Figure 2.3. Modified Bouc-Wen model for MR dampers 
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Figure27. Simple Bouc–Wen model for MR dampers [28].

where c0 and k0 are the viscous and stiffness coefficients,

respectively, an initial displacement x0 of the spring was

incorporated into the model to allow for the presence of an

accumulator in the considered damper and z is an evolutionary

variable governed by (50). By adjusting the parameter values

α, β, γ and n, it is possible to control the force–velocity

characteristic shape.

The simple Bouc–Wen model is well suited for the

numerical simulation, since the resulting dynamic equations

are less stiff than for the extended Bingham model. But it

cannot reproduce the experimentally observed roll-off effect in

the yield region, i.e. for velocities with a small absolute value

and an operational sign opposite to the sign of the acceleration,

as shown in figures 7(c) and 9(c).

In order to accurately characterize the behaviour of

MR dampers using the simple Bouc–Wen model given by

equations (51) and (50), a set of eight constant parameters that

relate the characteristic shape parameters to current excitation

should be identified and the set of parameters is as follows:

= [c0, k0, α, x0, γ , β, A, n].

6.2. Modified Bouc–Wen model

The mechanical idealization of an MR damper depicted in

figure 28 has been shown to accurately predict behaviour

of the MR damper over a broad range of inputs. The

phenomenological model proposed by Spencer et al [28] is

governed by the following equations:

F(t) = c1 ẏ + k1(x − x0) (52)

where y is the internal displacement of the MR damper ruled

by

ẏ =
1

c0 + c1

[αz + c0 ẋ + k0(x − y)] (53)

where z is the evolutionary variable ruled by (according to (50)

and figure 28):

ż = − γ |ẋ − ẏ||z|n− 1z− β(ẋ − ẏ)|z|n + A(ẋ − ẏ) (54)

where k1 represents the accumulator stiffness, c0 and c1

represent the viscous damping observed at large and low

velocities, respectively, k0 is present to control the stiffness at
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Figure 28. Modified Bouc–Wen model for MR dampers [28].

large velocities and x0 is used to account for the effect of the

accumulator. The scale and shape of the hysteresis loop can be

adjusted by γ , β, A and n.

In order to accurately characterize the behaviour of

MR dampers using the modified Bouc–Wen model given by

equations (52)–(54), a set of ten constant parameters that relate

the characteristic shape parameters to current excitation should

be identified, and the set of parameters is as follows:

= [c0, c1, k0, k1, α, x0, γ , β, A, n].

To obtain a model which is valid for varying magnetic

field strengths, the parameters are assumed to be dependent

on the applied current (I ), which is determined by the voltage

(v) applied to the current driver. The proposed relationships

between the parameters and the applied voltage are as follows:

(i) Linear current relationship. Spencer et al [28] adopted a

linear relationship between the parameters and the applied

voltage, which is given by

α = α(u) = αa + αbu (55)

c1 = c1(u) = c1a + c1bu (56)

c0 = c0(u) = c0a + c0bu (57)

where c0a and αa are the damping coefficient and

Coulomb force of the MR damper at 0 V, respectively,

and u is an intrinsic variable to determine the function

dependence of the parameters on the applied voltage v.

The relationship between u and v is modelled by the first-

order filter given by

u̇ = − η(u − v) (58)

where η reflects the response time of the MR damper,

namely, larger η means faster response time, and v is the

command voltage sent to the current driver.

In order to accurately characterize the behaviour

of MR dampers using the current-dependent Bouc–Wen

model given by equations (52)–(58), a set of 14 constant

parameters that relate the characteristic shape parameters

to current excitation should be identified, and the set of

parameters is as follows:

= [c0a, c0b, c1a, c1b, k0, k1, αa, αb, x0, γ , β, A, n, η].
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where c0 and k0 are the viscous and stiffness coefficients,

respectively, an initial displacement x0 of the spring was

incorporated into the model to allow for the presence of an

accumulator in the considered damper and z is an evolutionary

variable governed by (50). By adjusting the parameter values

α, β, γ and n, it is possible to control the force–velocity

characteristic shape.

The simple Bouc–Wen model is well suited for the

numerical simulation, since the resulting dynamic equations

are less stiff than for the extended Bingham model. But it

cannot reproduce the experimentally observed roll-off effect in

the yield region, i.e. for velocities with a small absolute value

and an operational sign opposite to the sign of the acceleration,

as shown in figures 7(c) and 9(c).

In order to accurately characterize the behaviour of

MR dampers using the simple Bouc–Wen model given by

equations (51) and (50), a set of eight constant parameters that

relate the characteristic shape parameters to current excitation

should be identified and the set of parameters is as follows:

= [c0, k0, α, x0, γ , β, A, n].

6.2. Modified Bouc–Wen model

The mechanical idealization of an MR damper depicted in

figure 28 has been shown to accurately predict behaviour

of the MR damper over a broad range of inputs. The

phenomenological model proposed by Spencer et al [28] is

governed by the following equations:

F(t) = c1 ẏ + k1(x − x0) (52)

where y is the internal displacement of the MR damper ruled

by

ẏ =
1

c0 + c1

[αz + c0 ẋ + k0(x − y)] (53)

where z is the evolutionary variable ruled by (according to (50)

and figure 28):

ż = − γ |ẋ − ẏ||z|n− 1z− β(ẋ − ẏ)|z|n + A(ẋ − ẏ) (54)

where k1 represents the accumulator stiffness, c0 and c1

represent the viscous damping observed at large and low

velocities, respectively, k0 is present to control the stiffness at
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large velocities and x0 is used to account for the effect of the

accumulator. The scale and shape of the hysteresis loop can be

adjusted by γ , β, A and n.

In order to accurately characterize the behaviour of

MR dampers using the modified Bouc–Wen model given by

equations (52)–(54), a set of ten constant parameters that relate

the characteristic shape parameters to current excitation should

be identified, and the set of parameters is as follows:

= [c0, c1, k0, k1, α, x0, γ , β, A, n].

To obtain a model which is valid for varying magnetic

field strengths, the parameters are assumed to be dependent

on the applied current (I ), which is determined by the voltage

(v) applied to the current driver. The proposed relationships

between the parameters and the applied voltage are as follows:

(i) Linear current relationship. Spencer et al [28] adopted a

linear relationship between the parameters and the applied

voltage, which is given by

α = α(u) = αa + αbu (55)

c1 = c1(u) = c1a + c1bu (56)

c0 = c0(u) = c0a + c0bu (57)

where c0a and αa are the damping coefficient and

Coulomb force of the MR damper at 0 V, respectively,

and u is an intrinsic variable to determine the function

dependence of the parameters on the applied voltage v.

The relationship between u and v is modelled by the first-

order filter given by

u̇ = − η(u − v) (58)

where η reflects the response time of the MR damper,

namely, larger η means faster response time, and v is the

command voltage sent to the current driver.

In order to accurately characterize the behaviour

of MR dampers using the current-dependent Bouc–Wen

model given by equations (52)–(58), a set of 14 constant

parameters that relate the characteristic shape parameters

to current excitation should be identified, and the set of

parameters is as follows:

= [c0a, c0b, c1a, c1b, k0, k1, αa, αb, x0, γ , β, A, n, η].
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In this parametric model, the MR damper force can be obtained by the following equations: 

 

 ( )    ( ̇   ̇)    (   )    (    )        ̇    (    ) (2.4) 

 

where z is the evolutionary variable given by 

 

 ̇    | ̇   ̇| | |     ( ̇   ̇)| |   ( ̇   ̇) (2.5) 

 

and y is the internal displacement of the MR damper given by 

 

 ̇    (     )    ̇    (   )      (2.6) 

 

In these equations, c0 represent the viscous damping at large velocities, c1 the viscous damping to 

produce the roll-off effect observed at low velocities, k0 regulate the stiffness at large velocities, k1 is 

related with the accumulator stiffness and x0 is used to account for the effect of the accumulator. As in 

the simple Bouc-Wen model, the non-linear shape of the hysteretic curve can be adjusted by changing 

the values of the Bouc-Wen block parameters A, β, γ and n. Usually, these parameters are considered 

fixed while the parameters α, c0, c1 are assumed to be functions of the applied current.  

 

 

3. EXPERIMENTAL PROGRAM 

 

The RD-1005-3 MR damper has a conventional cylindrical body configuration filled with 50 ml of 

MR fluid and comprising the piston, the magnetic circuit with a coil resistance of 5 Ω and the 

accumulator. The enclosing cylinder is 41.4 mm in diameter and the damper is 208 mm long in its 

extended position with ±2.5 cm stroke. The device can operate within a current range from 0.0 A up to 

2.0 A with a recommended input value of 1.0 A for continuous operation and can deliver a peak force 

of 2224 N at a velocity of 51 mm/s with a continuous operating current level of 1.0 A. The MR 

damper can reach at least 90% of maximum level during a 0.0 amp to 1.0 amp step input in less than 

25 milliseconds. 

 

A series of sinusoidal displacement excitation tests were performed to measure the response under 

different loading conditions in order to obtain the MR damper hysteretic response. The device was 

mounted into the MTS hydraulic actuation system and was then excited with a sinusoidal 

displacement. Several arrangements of amplitudes, frequencies and input current/voltage were studied 

in order to obtain the required experimental data to conveniently characterize the damper response. A 

thermocouple was connected with to the MR damper enclosure to verify if the operating temperatures 

developed during the tests are within the device range to avoid overheating.  

 

The sinusoidal excitation was directly produced using the MTS controller device and the measured 

response data, i.e., the load cell signals (force) and the hydraulic actuator displacement, were collected 

and recorded with the MTS software in a data acquisition system connected to the controller. These 

data were later processed with MATLAB package to obtain the response plots and also to obtain the 

model parameters through an identification procedure. 

 

The usual approach to characterize the behavior of MR damper comprises sinusoidal displacement 

excitation for several amplitudes, frequencies and voltage and current supplies. To obtain the required 

data, the damper was subjected to a series of selected sinusoidal displacement excitations through the 

MTS actuator system working in displacement control mode. The MTS controller automatically 

generated the excitation signals, i.e., frequencies and amplitudes while the Wonder Box device 

provides the constant current supply for each set of sinusoidal signals. A power supply unit was used 

to feed with a constant voltage the voltage-to-current converter. The converter constant input voltage 

and output current were monitored and the MR damper response was measured with respect to the 

operating current although the input voltage can also be considered to represent the damper response 

(current and voltage are related by the input-to-output relationship). 



Table 3.1 sinusoidal excitation parameters RD-1005-3 MR damper  

Parameter Values 

Frequencies (Hz) (0.50, 1.00, 1.50, 2.00) 

Amplitudes (mm) (2.0, 4.0, 6.0, 8.0, 10.0) 

Current supplies (A) (0.00, 0.10, 0.20, 0.25, 0.50, 0.75, 1.00) 

 

The testing procedure was carried out with a fixed frequency and amplitude sinusoidal displacement 

for a specific current supply repeating this process for every parameter combination (Table 3.1). The 

experimental data of the parametric study for MR dampers are typically grouped according to the 

variability of the different parameters sets as current input tests, frequency-dependent tests and 

amplitude-dependent tests.  

 

 
 

Figure 3.1. Experimental results (1Hz, 4mm and variable current input) 

 

Fig. 3.1 shows the result for the current input tests. As expected, the damping force increase along 

with the operating current level and the typical rheological behavior of the MR damper is observed. 

When the device is operating without an operating current, the damper response exhibits a reduced 

hysteretic behavior with a narrow hysteretic loop while operating with a non-zero constant input 

current level the damper exhibit a significantly larger hysteretic behavior.  

 

The input-to-output response of the voltage-to-current converter used to power the MR damper 

(WonderBox) was studied. To measure the actual voltage-to-current relationship, the converter was 

connected to the MR damper and a regulated power supply unit was used to deliver a constant input 

voltage to the converter. It was verified that the current output is kept at a constant level for each 

constant voltage input value and also that the system has a linear voltage-to-current relationship as 

shown in Fig. 3.2.  



 
 

Figure 3.2 Voltage-to-current converter relationship (RD-1005-3) 

 

The response time was also studied. According with the device specifications, the MR damper can 

reach at least 90% of maximum level in response to a step input (0.0 A to 1.0 A) in less than 25 

milliseconds at a constant piston velocity of 2 in/sec (51 mm/sec). A parametric study was carried out 

for four input voltages (1.0, 1.5, 2.0 and 2.5 V).  

 

The procedure used to compute the response time from the experimental data is shown in figure 3.3. 

The initial and final values of the measured response times for the step input with 2.0 V were found to 

be 17 ms (95% limit) and 43 ms (5% limit) respectively. Therefore, the activation of the MR fluid 

(OFF-ON) is significantly faster than the deactivation (ON-OFF) process due to the residual 

magnetization effect. 

 

 
 

Figure 3.3. Response time for a square wave voltage of 2.0 V 

 

The response time can be considered as a first-order time lag in the device response. Hence, the rise 

time can be included using a first-order filter given by 

 

 ̇         (              ) (3.1) 

 

where νinput is the desired command signal input applied to the converter, uinput is the real signal output 

and η=1/T is a time constant parameter. In this case, the measured output signal can be approximated 

by the time constant η=130 sec
-1
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4. NUMERICAL SIMULATION 

 

4.1. Bingham Model 

 

The Bingham model involves the identification of three parameters (fc, c0 and f0). The force due to the 

accumulator can be determined directly from the experimental response since the accumulator 

produces a nearly constant force offset (f0 =40N) that can be measured by centering the experimental 

response plot. The parameters fc and c0 are voltage/current dependent and their values were computed 

with the parameter identification procedure previously described. 

 

  ( )                                   (4.1) 

 

  ( )                                      (4.2) 

 

Fig. 4.1 show the experimental vs numerical response (f=1.5Hz, A= 4mm and  I= 1.00A). 

 

 
 

Figure 4.1. Experimental vs. numerical response Bingham model (1.50 Hz, 4mm and 1.00A) 

 

4.2. Bouc-Wen Model 

 

The force offset f0 =40N has the same value of the Bingham model force offset and was assumed that 

n=2. It was observed that parameters A, β, γ show slow change with frequency, amplitude and input 

current.Then, the average values of the current independent parameters are A=30.852, β=0.081 mm
-2

, 

γ=1.507 mm
-2

 and k0 =1.984 N/mm. The current dependent parameters are given by 

 

 ( )                                   (4.3) 

 

  ( )                             (4.4) 



 
 

Figure 4.2. Experimental vs. numerical response Bouc-Wen model (1.50 Hz, 4mm and 1.00A) 

 

Fig. 4.2 shows the results for the Bouc-Wen model when the damper is driven with a harmonic 

excitation of 1.50 Hz with 4mm amplitude and an operating current of 0.75A. The results show that 

the simple Bouc-Wen model is capable to characterize the MR damper hysteretic response. However, 

the predicted computational results are still far from a perfect representation of the hysteretic behavior. 

 

4.3. Modified Bouc-Wen model 

 

The Modified Bouc-Wen model or Spencer model is a variation of the simple Bouc-Wen model to 

improve the nonlinear force-velocity hysteretic response of MR dampers since the simple Bouc-Wen 

model does not reflect the roll-off effect in the region where the acceleration and velocity have 

opposite signs and the magnitude of the velocities are small.  

 

It was assumed that n=2 and the force offset, defined by k1(x-x0) that represent the force due to the 

accumulator existence, has the same value of the Bingham and the simple Bouc-Wen model force 

offset (f0 =40 N). The average values of the current independent parameters A=10.013, β=3.044 mm
-2

, 

γ=0.103 mm
-2

 and k0 =1.121 N/mm were found. The parameters α, c0 and c1 are described as functions 

of the input current by  

 

 ( )                                   (4.5) 

 

  ( )                               (4.6) 

 

  ( )                               (4.7) 

 

Despite the complexity of the MR fluid behavior associated with the accumulator influence in the 

global MR damper response, the predicted behavior is considerably better than the one’s obtained with 

the Bingham model, and a significant improvement over the simplified Bouc-Wen model. 



 
 

Figure 4.3. Experimental vs. numerical response Modified Bouc-Wen model (1.50 Hz, 4mm and 1.00A) 

 

Fig. 4.3 show the numerical response obtained with the modified Bouc-Wen model. Comparing the 

three models is clear that the Bingham model can be used in very simple simulations of the damper 

response; although this model can reproduce the overall response, it is unable to process the typical 

non-linear hysteretic behavior of these dampers. The simple Bouc-Wen model is a more detailed 

model with the ability to simulate the non-linear hysteretic response; but the resulting hysteretic loops 

are incapable to reproduce the roll-off effect observed at low velocities. To overcome this problem, the 

enhanced Modified Bouc-Wen was developed and the roll-off effect was introduced in the numerical 

simulation. The drawback of the more elaborated modes is related with the number of parameters that 

are involved in the identification procedure, which increases the required computational work. 

 

 

5. CONCLUSIONS  

 

The present article addressed the non-linear hysteretic properties of MR dampers, presenting a general 

review of the available parametric modelling approaches. In the first section the parametric models 

were presented and three of the most common approaches were extensively reviewed. An 

experimental testing procedure was carried out to characterize the response of a commercial MR 

damper and the experimental data were used to develop several numerical models. These models 

require the definition of some model parameters that must be initially found to construct a realistic 

numerical response. Thus, an identification routine was developed and the predicted response was 

compared with the experimental data. As expected, more complex models are computationally 

cumbersome but are significantly more accurate than simpler models. 
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