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SUMMARY: 

Structural weakening and addition of damping is an approach previously proposed for the reduction of seismic 

forces and drifts in the retrofit of structures. It is also used in the design of new buildings with damping systems.  

While this approach is efficient, it does not significantly reduce and may even amplify inelastic excursions and 
permanent deformations of the structural system during a seismic event. This paper describes a negative stiffness 

device (NSD) that can emulate weakening of the structural system without inelastic excursions and permanent 

deformations. The NSD simulates yielding by engaging at a prescribed displacement and by applying a force at 

its installation level that opposes the structural restoring force. This paper reports the development and operation 

of the NSD and presents analytical and computational tools that describe the behavior of the device. 
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1. INTRODUCTION 

 

Current practice for designing structures against seismic actions relies on ductile behavior and allows 
the development of significant inelastic deformations in strong earthquakes so that reduction of inertia 

forces is achieved.  At best, this approach ensures life safety in the design earthquake event and 

collapse prevention in the maximum earthquake event.  Large drifts, permanent deformations and loss 
of functionality of the structure are common observations of performance after strong seismic events.  

Reinhorn et al (2005) and Viti et al (2006) introduced the concept of weakening (reducing strength and 

implicitly stiffness) and introduction of supplemental viscous damping to simultaneously reduce 

structural accelerations and inter-story drifts in the retrofit of structures.  Moreover, the approach 
described in ASCE 7, Chapter 18 (American, 2010) for the design of structures with damping systems 

is based on the concept of reduced strength and stiffness and addition of damping to achieve the same 

objective for new construction (Ramirez et al, 2001).  Specifically, new buildings designed with 
viscous damping systems per minimum criteria of the ASCE 7 Standard, Chapter 18 have strength and 

stiffness approximately half of that of a comparable building without the damping system that also 

meets the drift criteria (Ramirez et al, 2001).  However, the approach does not reduce inelastic action 

or improves the performance of the structural system unless enhanced viscous damping is used to 
achieve a higher performance level (Ramirez et al, 2001; Pavlou et al, 2006).  An alternative approach 

is to “simulate yielding” by introducing true negative stiffness at predescribed displacements leading 

to the concept of “apparent weakening” (see Nagarajaiah et al, 2010 and Pasala et al, 2012). 
 

True negative stiffness means that a force is introduced to assist motion, not to oppose it. The device 

developed in this work uses a passive mechanical system to generate the negative stiffness and it does 
not need any external power supply.  The concept of negative stiffness was first introduced in the 

pioneering publication of Molyneaux (1957) in several proposals for vibration isolation systems.  This 

original idea recently became reality in the development of highly effective vibration isolation systems 

(e.g., see US patent 6676101BB2; Platus, 2004).  Thus far the application of negative stiffness devices 
has been limited to vibration isolation of small, highly sensitive equipment and of seats in automobiles 



(Lee et al (2007)).  The reason that this technology has been restricted to small mass applications is 

due to the requirement for large forces to develop the necessary negative stiffness.  These preload 

forces are typically of the order of the weight of the isolated structure.  The application of negative-

stiffness concept to massive structures, like buildings and bridges, requires modification of the 
existing mechanisms to reduce the demand for preload force and to “package” the negative stiffness 

device in a system that does not impose any additional loads on the structure, other than those needed 

for achieving the goal of seismic protection. These requirements lead to the development of the true 
negative system device described in this paper (termed Negative Stiffness Device or NSD). 

 

Note that other negative stiffness concepts have also been developed and tested for structures, but they 
lack the important characteristics that can be achieved using the NSD.  One example is the pseudo 

negative stiffness system developed by Iemura et al (2009) which makes use of active or semiactive 

hydraulic devices to develop negative stiffness.  Another example is the one described by Iemura et al 

(2009) in which a structure is placed on top of convex pendulum bearings. Negative stiffness is 
generated due to the structure’s vertical loads applied on the convex surface (as opposed to the 

behavior of Friction Pendulum bearings that utilize concave surfaces-see Fenz et al, 2008-and in 

similarity to the behavior of the uplift-restraining Friction Pendulum bearing-see Roussis et al, 2006)  
while elastomeric bearings placed in parallel provide positive stiffness. Their combination however 

generates a system of low effective stiffness that emulates the behavior of single Friction Pendulum 

bearings. Additional implications might arise due to the fact that the vertical loads are transferred 
through an unstable system which generates constant negative stiffness for all displacement 

amplitudes.  

 

 

2. NEGATIVE STIFFNESS DEVICE (NSD) DESCRIPTION 

 

The NSD is shown in Fig. 2.1. (photographs) and schematically in Fig. 2.2. in un-deformed and 
deformed configurations. The device consists of a pre-compressed spring shown in the center of the 

device and two GSAs at the bottom. The pre-compressed spring is connected with a link mechanism 

which transfers horizontal loads to the upper and lower part of the frame.  When the device deforms in 

one direction, the pre-compressed spring rotates and creates a force that assists motion, thus creating 
the negative stiffness.  
  

       
 

Figure 2.1. Views of Negative Stiffness Device [(a): Un-deformed NSD; (b): Deformed NSD] 

 

Consider that point A (or the top of the device) moves to the right as shown in Fig. 2.2.(b). The lever-
AB imposes a displacement on point B, which causes plate BCD to rotate about the pivot C.  Due to 

the axial rigidity of the lever and its negligible rigid body rotation, the imposed displacement at point 

A and the displacement of point B are practically equal. Point D moves in the direction opposing the 
displacement of point A. Point E is rigidly connected to the top of the device (through the top chevron 

brace) and therefore has a displacement equal to that of point A.  Due to the kinematics of points D 

and E, the pre-compressed spring rotates and its force facilitates the motion rather than opposing it. 

Note that the motion of point D relative to point E (extension of spring) is magnified by comparison to 
the motion of point A (a) by the ratio of the lever (distance DC to CB) and (b) by additional factor due 

to combination of movement of point E by the same amount as point A and the existence of the lever.   



The spring exhibits its minimum length when the device is un-deformed. As the device deforms, the 

spring extends, its pre-compression force reduces, its angle of inclination increases and the negative 

stiffness magnitude generated by the device reduces. This is illustrated in the lateral force-

displacement relation of the NSD without the GSA contribution shown in Fig. 2.3.(a). Note that this 
negative stiffness reduction eventually leads to positive stiffness at larger displacements.  This is a 

desired effect, which this is termed “stiffening” in this paper. Stiffening can be very important in 

earthquakes beyond the maximum considered earthquake where it can act as displacement restrainer.   
 

Each of the two GSAs is bolted to the bottom of the device and is connected to the top chevron brace 

through simple compression contact, as shown in Fig. 2.2.(b).  When point A moves to the right, point 
E moves by the same amount and compresses one of the GSA. The compressed GSA has the lateral 

force-displacement relation shown in Fig. 2.3.(b), which when added to the force-displacement 

relation of the NSD (Fig. 2.3.(a)) results in the relation shown in Fig. 2.3.(c).  Negative stiffness is 

eliminated for displacements less than the apparent-yield displacement yu  (also termed as NSD 

engagement displacement). The GSA can be designed to generate a positive stiffness equal to or 
slightly larger than the negative stiffness at zero displacement so that effectively the total stiffness 

generated by the NSD for displacements less than yu  is approximately zero or slightly larger than 

zero as shown in Fig. 2.3.(c). Note that the large compressive force in the pre-loaded spring is in 

equilibrium with compressive forces in the double-hinged columns of the assembly (see Fig. 2.1. and 

Fig. 2.2.). 

 
 

Figure 2.2. Schematics of Negative Stiffness Device 

 

                                 
 

Figure 2.3. Ideal Force-displacement Relations of Components of Negative Stiffness Device [(a): NSD w/out 

GSA; (b): GSA; (c): NSD w/ GSA] 

 
 

3. ANALYTICAL MODEL OF NEGATIVE STIFFNESS DEVICE 

 

First consider the device without the GSA (Gap Spring Assembly Mechanism). The deformed shape 
of the center link mechanism made of the spring and the pivot plate and the forces acting on a free 

body diagram of the device are shown in Fig. 3.1. The lateral displacement of the top of the device 

with respect to the bottom is u and is considered equal to the displacements of points B and E 



(assuming rigid members and negligible rotation of the lever). In Fig. 3.1., l2 is the length of the pivot 

plate from point-C to point-B, l1 is the length from point-C to point-D, θs is the inclination angle of the 

spring, θp is the angle of the pivot plate with respect to vertical. From geometry and considering that 

point C is fixed (connected to the bottom of the device), the displacements and angles θs and θp are 
given by:  

 

2 1B E Du u u l l u    ;  1 2arcsin 1s su l l l     ;    2arcsinp u l    (3.1) 

 

The spring length in Fig. 3.1. at the deformed configuration is given by: 
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     (3.2) 

 

Where lp is the length of the spring when the NSD is un-deformed (u=0). The force Fs is the force of 

the pre-compressed spring given by  s in s s pF P K l l   . Where Pin is the pre-compression force of 

the vertical spring and should have a positive value and Ks is the stiffness of the pre-compressed 

vertical spring. The total NSD force is:  cosNSD C g s sF F F F u h    . Where h is the height of 

the double-hinged column, shown in Fig. 2.2.(a), Fg is the force of the gap spring assembly given by 

Eqn. 3.8. later in this paper and FC (see Fig. 4) is the horizontal force at point C. FNSD is the external 

force that needs to be applied on top of the NSD to stabilize it or equivalently the force generated by 
the NSD and transferred to its top support (structure). Writing the equilibrium equations for the pivot 

plate using the forces shown in Fig. 3.1. and using Eqn. 3.1.,3.2., one can calculate the horizontal force 

at point C. The final expression for the NSD force is: 
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    (3.3) 

 

The vertical forces in the NSD caused by the spring’s vertical force component create compression on 
the double hinged columns. When these rotate the horizontal component of their axial load contributes 

to the total force displacement of the NSD. This is reflected in the third term of Eqn. 3.3., which was 

derived assuming that the inclination angle of the double hinged columns is small. The height h of the 
double hinged column is treated as an independent quantity however for most practical 

implementations it can be assumed that 
1 2ph l l l    and therefore Eqn. 3.3. can be further 

simplified. Note that the effect of the last term in Eqn. 3.3. becomes more and more apparent as the 
NSD height reduces or as the ratio l1/l2 reduces. If these effects can be neglected, then the NSD force 

can be given by: 
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                (3.4) 

 

The principle of operation of the gap spring assembly is shown in Fig. 3.1.(b).  Spring S2 with 
stiffness ks2 of the GSA is pre-compressed by an initial force, Pis2 (positive) and held in place by a rod 

and two housing plates. Spring S1 is initially unstressed and its stiffness is ks1. Force Fg is the external 

force applied to the gap spring assembly, u is the total displacement of the assembly equal to the 
displacement of housing plate 2, uh is the total displacement of housing plate 1, dgap is the opening of 

the gap between housing plate 1 and the reaction plate of spring S1 ( the value of dgap should be large 

enough so that it does not close during the operation of the assembly). Fs1 is the total force of spring 

S1, Fs2 is the total force of spring S2, Fr is the force in the rod connecting the housing plates 1 and 2 
and kr is the stiffness of the rod. kr, is orders of magnitude larger than the stiffness of springs S1 and S2 



and its exact value does not affect the GSA force. Also, the stiffness of spring S1, is much larger than 

the stiffness of spring S2, typically 20-100 times larger. Once installed, S2 is held in place by the nuts 

of the rod that is passing through the housing plates. Under the action of preload, the rod deforms and 

the spring slightly reduces its pre-load. Although the loss in preload is very small and the preload 
value is still Pis2, the initial rod deformation given by uin=Pis2/kr is important in the behavior of the 

assembly. From the free body diagrams of Fig. 3.1.(b), the spring and rod forces can be expressed 

as; 1 1s s hF k u ;  2 2 2s is s hF P k u u   and 
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The two parts of Eqn. 3.5. correspond to two stages of operation of the gap spring assembly. The first 

stage is defined when the force of the rod is nonzero and therefore the rod and nuts are still in contact 

with spring S2. The second stage initiates when the nuts separate from housing plates 1 and 2 and the 
force of the rod becomes zero. From the free body diagrams of Fig. 3.1.(b), equilibrium of housing 

plates 1 and 2 requires that: 
2 0g r sF F F    and 1 2 0s r sF F F   . Solution of these two equations 

results in the force-displacement relation of the gap spring assembly for the first stage: 
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                 (3.6) 

 

Eqn. 3.6. shows that the total displacement of the assembly is approximately equal to the deformation 

of spring S1 and therefore S2 moves as a rigid body. This is also reflected in Eqn. 3.6., where the 
stiffness of the assembly depends almost entirely on the stiffness of spring S1. The second stage of 

operation of the GSA (as shown in Fig. 3.1.(b)(c)) initiates when the rod separates from the housing 

plates.  The displacement and force at which this occurs can be calculated by setting 0rF  and 

yu u . The result will be: 
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Solution of 
2 0g r sF F F    and 1 2 0s r sF F F   , using 0rF  , results in the force-displacement 

relation of the gap spring assembly during the second stage (
yu u ). Therefore, the complete force 

displacement of the GSA for a positive displacement is given by: 
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   (3.8) 

Eqn. 3.8. represents a bi-linear elastic force-displacement relation for the GSA which softens when the 

apparent yield displacement yu is reached (see Fig 2.3.). The stiffness of spring S1 is selected to be 

equal to the negative stiffness generated by the NSD at zero displacement, which is equal to  
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The force versus displacement from Eqn. 3.8. and Eqn. 3.3. for Fg=0 are illustrated in Fig. 3.2. for the 

geometry of the tested device.  The force versus displacement relation of the complete device (NSD 



plus GSA) using Eqn. 3.3. is shown in Fig. 3.2.(a). Table 3.1. presents the parameters and their 

magnitude for the device used in the calculations of force in Fig. 3.2.(a). An important property of the 

NSD is the magnification of stiffness. Eqn. 3.3. reveals the two mechanisms by which this 

magnification is achieved: (a) the lever ratio l1/l2 and (b) another factor that results from the use of the 
double inverted chevron brace system and the way the components of the device connect to the braces. 

In order to better understand the significance of stiffness magnification in the NSD, consider a 

simplified negative stiffness device that only consists of a pre-compressed spring without the 
magnification mechanisms and the GSA, as shown in Fig. 3.2.(b). This basically is the original idea 

for the vibration isolation systems of Molyneaux (1957) with the addition of the system being self 

contained. Once the top of the system in Fig. 3.2.(b) displaces by u, the spring exerts a horizontal force 
component in the direction of displacement, thus generating negative stiffness. If the height loss due to 

the pendulum motion of the self containment assembly is neglected, the force displacement of this 

system is given by: 
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                (3.10) 

 

A comparison of the force-displacement relation generated by Eqn. 3.10. and Fig 3.3. is shown in Fig. 

3.3.(a) and Fig. 3.3.(b). The force is normalized by the spring preload, the length of the spring in the 
un-deformed position lp varies in the range 12.7 to 76.4cm and other parameters for the NSD with 

magnification are as in Table 3.1. The efficiency of the NSD with magnification is apparent. To better 

illustrate the magnification, the stiffness magnification factor (SMF) at zero displacement was derived 
after dividing Eqn. 3.3. using Fg=0 by Eqn. 3.10. and then letting u=0 as: 
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Fig. 3.3.(c) presents values of the stiffness magnification factor for various values of the lever ratio 

(l1/l2) by varying the value of length l1 while all other parameters are as presented in Table 3.1.  Fig. 

3.3.(c) illustrates significant magnification even when the lever ratio is less than unity.  Also, the SMF 

increases with increasing spring length.   Note that the tested device has l1/l2=2 resulting in a value of 
SMF at zero displacement equal to 48. This significant magnification has a desired major 

consequence: a proportional reduction in the requirement for spring preload. The tested prototype of 

NSD had a provision for adjustment of length l2 so that the magnification factor could be modified by 
approximately ±3cm. Fig. 3.3.(d) shows the ranges of behavior that can be achieved by the prototype 

NSD by modifying the lever ratio in this range.   
 

 
 

  

Figure 3.1. (a) Free body diagrams of NSD Center Mechanism; (b) Free body diagram of Gap Spring Assembly 



  
 

Figure 3.2. (a) Analytical Force-Displacement Relations of Negative Stiffness Device; (b) Simple Negative 

Stiffness Device without Magnification 

 

 
 

Figure 3.3. Comparison of Normalized Force-displacement Relation of Negative Stiffness Devices [(a): Device 

without magnification; (b): Device with magnification; (c): Stiffness magnification factor; (d): function of l2] 

 

 

4. ANALYTICAL MODEL FOR LARGE ROTATIONS 

 

The formulation in the previous section did not consider large rotations of the lever AB and reduction 

in the height of the device.  These effects become important when the height h of the device and the 
lever length llv (see Fig. 2.2.(a) for definition) are comparable in magnitude to the imposed 

displacement.  Fig. 4.1.(a) shows the NSD in its deformed shape.  The horizontal lever bar AB is 

shown rotated and the displacements of points A and B are no longer equal. That 

is 2 1A E B Du u u u u l l     .  In order to derive the relation between the displacements of points 

A and B, consider a reference coordinate system centered at point C in Fig. 4.1.(a). Point B then 

moves around two circles. One is denoted as R1 and is centered at C with a radius  l2  and the other 

denoted as R2 is centered at A at a horizontal distance of llv+u and vertical distance l2-h  from C with 
a radius llv. The displacement of point B as a function of the NSD displacement is simply the 
intersection of the two circles for points located above C (y>0). Once the displacement of point B is 

expressed as a function of u, the NSD force is calculated by the same process used for the small 

rotation case: 
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                    (4.2) 
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         (4.3) 

 
In Eqn. 4.1. the horizontal component of the double hinged column’s axial load has been calculated 



using the exact axial load assuming large rotations of the double hinged columns and it is given by 

Fscos(θs)tanθ where θ is the inclination angle of the double hinged columns given by θ=arcsin(u/h). 

Consider the virtual case in which the dimensions l1, l2 and lp are as given in Table 3.1. but the height h 

is varied.  Force-displacement relations for the NSD for various values of ratio of lateral displacement 
to height u/h are presented in Fig. 4.2. Differences are noticeable only when the device height 

becomes extremely small. Variations in the lever length are only of analytical interest and can become 

noticeable only when the lever length becomes extremely small. Results are therefore omitted for this 
case. 

 
 

Figure 4.1. Kinematics and Dynamics of Deformed NSD 

 

4.1 Dynamic effects in negative stiffness device 

 

The NSD consists of members with mass and therefore inertia forces may affect its performance.  This 

is investigated in this section and shown that these effects are of some significance but not important 

for most practical applications.  However, the formulation presented in this section better explains 
observations in the testing of NSD devices that are described in Sarlis (2012a). The rigid body 

dynamics of the NSD are derived using the Lagrangian formulation. Mass and moments-of-inertia of 

the device components are shown in Fig. 4.1.(b). All frame elements connected to the top channel and 
the double hinged columns having a total mass mf and mh respectively, undergo an inverted pendulum 

motion around the base and their moment of inertia are assumed lumped at points F (in the mass center 

of the moving elements located at distance y  from L1) and, L1 and L2 (at the bottom of the columns), 

as shown in Fig. 4.1.(b). The mass mp and the moment of inertia Ip of the pivot plate is assumed 

lumped at point C. The center of mass of the vertical spring undergoes both translation and rotation. 

Its mass ms is assumed lumped at its center of mass. The moment of inertia of the spring 
2 12s s sI m l  is assumed lumped at center of mass, but the location of the center and the value of the 

moment of inertia vary with displacement u as the spring changes length.  Also, the rotation of the 
pivot plate and spring is given by Eqn. 3.1.; while the horizontal displacement of the center of mass of 

the spring is the average of the displacements of points D and E given by Eqn. 3.1.  The vertical 

displacement of the center spring’s midpoint is half the vertical displacement of point D (height loss of 
point E is ignored) and can be calculated from geometry shown in Fig. 3.1. and Fig. 4.1.(b). Finally 

the rotation of the lever is ignored for the calculations presented here. Note that all displacement and 

rotation quantities are functions of the lateral displacement of the NSD, u. The force generated by the 

NSD, 
D

NSDF , shown in Fig. 4.1.(b), is given by:  
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For the final expressions presented in Eqn. 4.4.-4.7.,  the spring length ls and its derivatives with 

respect to displacement 
22,s sdl du d l du can be calculated using Eqn. 3.2., Eqn. 4.1.-4.7. were solved 

for specified harmonic displacement of 64mm amplitude and frequencies in the range of 0 (quasi-

static) to 3Hz and for the device parameters in Table 3.1.  Fig. 4.3.(a) shows the force-displacement 

relations obtained for the device without and with the GSA. Evidently, there is some limited effect of 
inertia forces on the calculated force-displacement relations (the larger the frequency, the larger the 

inertia forces are) but the effects are small for practical purposes.  Note that frequencies below 1.5 Hz 

represent the range of fundamental frequency of structures to which such devices may be installed.  

Finally, Fig. 4.3.(b,c) presents experimental force-displacement relations obtained for the tested 
prototype of NSD (see also Sarlis, 2012b) in harmonic motion of frequency of 0.1Hz and amplitude of 

64mm.  The experimental relations are in very good agreement with the analytical relations shown in 

Fig. 3.2. but for some small hysteresis in the experimental loops.   The hysteresis is caused by friction 
in the joints of the prototype NSD which has not been considered in the analytical models developed 

in this paper.  

  

                            
 

Figure 4.2. Effect of height variation in NSD Force-displacement Relations including Large Rotation Effects  

 
Table 1. Prototype Negative Stiffness Device Properties 

Distance Symbol Val. Units 

 

Quantity Symbol Value Units 

spring pin to fixed pin l1 25.4 cm Preload Pin 16.5 kN 

lever pin to fixed pin l2 12.7 cm Spring S1 –Stiffness ks1 4.9 kN/cm 

Spring length lp 76.2 cm Spring S2 –Stiffness ks2 0.3 kN/cm 

Lever length llv 67.3 cm Spring S2 – Pre-load Pis2 8.1 kN 

Double hinged col. height h 124.5 cm Spring rate ks 1.4 kN/cm 

NSD engagement disp. dgap 1.65 cm     

 

 

5. CONCLUSIONS 
 

A Negative Stiffness Device (NSD) was developed and evaluated analytically and experimentally.  A 

detailed description of the operation, component function and design of the device has been presented.  
It has been shown that a key feature of the device is a large magnification factor for the negative 

stiffness that substantially reduces the requirements for preload in order to achieve the needed negative 

stiffness.  This feature alone renders the device implementable to structures of large weight. Analytical 

models of increasing complexity have been developed starting from the simplest possible assuming 
small rotations to increasing complexity that included large rotation and inertia force effects.  It has 



been determined that the simplest model without large rotation and inertia force effects is sufficiently 

accurate for most practical cases.  
 

  
 

Figure 4.3. (a) Force-displacement Relations of NSD Obtained with Consideration of Inertia Effects; 

Experimental Force-displacements Relations of NSD [(b): Without GSA; (c): With GSA] 
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