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SUMMARY: 
In the current study, the seismic behaviour of L-shaped quay walls is considered in two conditions: with or 
without counterfort. Numerical modelling in finite elements method (3D solid elements) is used to model the 
wall and the soil behind it. Wall’s elements consist of concrete and reinforcement which have nonlinear 
behaviour in the seismic analysis. For being more specific in modelling, the reinforcements of the concrete are 
considered in seismic behaviour of the wall. The soil inelastic behaviour is modelled by using modified Drucker-
Prager failure criterion. with different values of friction angle. Moreover, contact surfaces are used for soil-
structure interaction in the structural model. The system is subjected to El Centro ground acceleration earthquake 
record to investigate the effects of soil type and counterfort on seismic response of these structures. The results 
show that increase in friction angle of soil lead to reduction of the wall deflection. Using retaining walls with 
counterforts not only can improve the seismic behaviour of the wall but also lead to a more economical design. 
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1. INTRODUCTION 
 
Nowadays it is so important to understand the behaviour of quay walls according to widespread usage 
of this type of structures in marine environments. The L-shaped retaining wall is a kind of gravity wall 
which is used with or without counterfort. Moreover the effect of soil-structure interaction could make 
the modelling more specific and realistic. Use of counterforts for L-shaped walls is very important 
because it can reduce the thickness of the main cantilever wall on high elevations and make the wall’s 
design more economic. 
 
Behaviour of gravity quay-walls underground excitation was already addressed by a number of 
researchers. For example Madabhushi and Zeng (1998) numerically studied the seismic response of 
gravity quay-walls. Dynamic behaviour of caisson type quay-walls was studied by Kuwano et al. 
(1999) through centrifuge model tests. 
 
Goh (1993) studied the behaviour of cantilever retaining walls and proposed a simplified design 
procedure for estimating the lateral earth pressures in cantilever retaining walls with loosely placed 
backfill. Kim et al. (2004) evaluated the magnitude and the phase variation of the dynamic thrust on 
the back of the wall and verified their results with experimental shaking table test. Kolathayar and 
Ghosh (2009) investigated the seismic active earth pressure behind the rigid cantilever retaining wall 
with bilinear backface using pseudo-dynamic approach. Gursoy and Durmus (2009) assessed the 
linear and nonlinear behaviour of reinforced concrete cantilever retaining walls according to the 
earthquake loads considering soil-structure interaction. 
  



2. MATERIALS 
 
2.1. Soil modelling 
2.1.1. Modified Drucker-Prager 
 
This Model has been introduced by Drucker
has been modified and expanded (Chen and Mizuno 1990; Sandler 2002). 
Drucker-Prager cap model (ABAQUS 2006). The
surface includes three segments: a shear failure surface, providing dominantly shearing flow. A Cap, 
providing an inelastic hardening mechanism to represent plastic compaction, and a transition region 
between these segments, introduced to provide a smooth surface purely for facilitating the numerical 
implementation.  
 

Figure 2.1. Drucker-Prager Cap model: yield surface in the p
 
 
2.1.2. Formulas and material parameters
 
The Drucker-Prager shear failure surface is written as:
 F = q− p. tan(β)− d
Where β is the material friction angle, d is its cohesion, 

stress, and q =    (S: S) is the Mises equivalent stress in which S is the stress deviator, defined as:

 S = σ+ pI                                                           
 
Where σ is the stress tensor, and I is the identity matrix.
For a uniaxial cylindrical die compaction test, the hydrostatic pressure stress and the Mises equivalent 
stress are expressed as: 
 p = −   (`σ + 2σ )       q = |σ − σ |                       
 
Where σ  and σ  are the axial and radial stresses, respectively.
The cap serves two main purposes: it bounds the yield surface in hydrostatic compression, provides an 
inelastic hardening mechanism to represent plastic compaction, and helps to control volume dilatancy 
when the material yields in shear by providing softening as a function of the inelastic volume increase 
created as the material yields on the Drucker

Prager cap model 

introduced by Drucker et al. (1957). Over the years, the DPC plasticity model 
and expanded (Chen and Mizuno 1990; Sandler 2002). Fig.
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The cap serves two main purposes: it bounds the yield surface in hydrostatic compression, provides an 
ism to represent plastic compaction, and helps to control volume dilatancy 

when the material yields in shear by providing softening as a function of the inelastic volume increase 
tion yield surfaces. The cap 



surface hardens or softens as a function of the volumetric plastic strain: volumetric plastic compaction 
(when yielding on the cap) causes hardening, while volumetric plastic dilation (when yielding on the 
shear failure surface) causes softening. The cap yield surface is written as: 
 F =  (p− p ) +               − R(d + p . tan(β) = 0                  (2.5) 

 
where R is a material parameter (between 0.0001 and 1000.0) that controls the shape of the cap, α is a 
small number (typically 0.01–0.05) used to define a smooth transition surface between the shear 
failure surface and the cap, and p  is an evolution parameter that represents the volumetric plastic 
strain driven hardening/softening. The hardening/softening law is a user-defined piecewise linear 
function relating the hydrostatic compression yield stress, p , and the corresponding volumetric 
inelastic (plastic and/or creep) strain. Here, only volumetric plastic strain ε   is considered, we have: 
 p = f(ε  )                                                                                                 (2.6) 
 
The volumetric plastic strain can be expressed as: 
 ε  = ln (    )                                            (2.7) 
 
Where ρ is the current relative density, and ρ  is the initial relative density on filling of die. The 
evolution parameter ρ  is given as: 
 p =      (   .    )                             (2.8) 
 
The transition surface is defined as: 
 F =  [p− p ] +  q−  1−       (d + p . tanβ)  − α(d + p tanβ) = 0     (2.9) 
 
To determine the plastic flow rule, the plastic potential is defined by an associated component (that is, 
a potential function G  that is equivalent to the cap yield surface F ) on the cap and a non-associated 
component on the failure and transition regions. The associated flow potential component in the cap 
region is defined as: 
 G =  (p − p ) +                                                                                          (2.10) 

 
The non-associated flow component in the failure and transition regions is defined as: 
 G =  [(p − p). tanβ] +                                                                             (2.11) 

 
The two elliptical portions, G  and G , form a continuous and smooth potential surface.  
To uniquely define each of the yield surfaces, six parameters are required: β, d, p , R, p  and α, for 
which β, d, R and p  are functions of the relative density. The friction angle β and cohesion d are 
needed to define the Drucker-Prager shear failure surface; the cap eccentricity parameter R and 
evolution p  are required to define the cap surface, and p  as a function of the volumetric plastic strain 
is required to define the cap hardening/softening law; α is required to define the transition surface. 



2.2. Metal modelling 
 
There are two common types of metal plasticity laws available in commercial finite element codes, 
isotropic or kinematic hardening.
Both plasticity laws are defined in
as steel (Chen and Han, 1988).
condition, i.e. compressing a column to failure, while kinematic hardening is useful for 
cyclic loadings or combining different loading states, e.g., cold bending followed by loading to 
collapse. In this paper because of the cyclic loading implemented to the system, kinematic hardening 
plasticity law is used to model the reinforceme
 
2.2.1 Isotropic hardening 
 
Isotropic hardening is represented with an expansion of the von Mises ellipsoid as the effective stress, σ  , exceeds the yield stress, σ     
 σ =  √  (σ − σ ) +
 
It follows OAB and then springs back along BR as shown in 
lines in Fig. 2.2b is equal to Poisson’s ratio, ν, which is assumed equal to 0.30 for elastic deformation 
and 0.50 for plastic deformation. The presence of residual stresses after cold bending is denoted with 
the offset of point R from the origin.
 

Figure 2.2. Hardening with residual stresses from cold bending: (a) stress
with expanding yield surface, and (c) 

 
2.2.2. Kinematic hardening 
 
Kinematic hardening is defined with the same Von Mises ellipsoid employed for isotropic hardening. 
However as the stresses exceed 
permanently shifts to accommodate the imposed stress. The shifting yield surface i
different type of yielding behaviour
surface is defined by the backstress components 
After the yield surface has shifted, unloading occurs elastically along 
residual stress. If the steel is now loaded again in the same direction as the original loading (again 
along the line OA in Fig. 2.2c), the apparent yield stress is increased. However, if the steel is loaded in 
the opposite direction along OA (i.e. 
a lower apparent yield stress. This asymmetric yield
and is commonly referred to as the 
cyclic nature of the loadings applied to cold
by elastic springback, and then applied load in service, requires a combination of isotropic and 
kinematic hardening to accurately simulate structural 
follows which explores how the choice of plasticity law and the inclusion or exclusion of residual 
stresses and effective plastic strains from cold
Moen, 2010). 

There are two common types of metal plasticity laws available in commercial finite element codes, 
isotropic or kinematic hardening. 
Both plasticity laws are defined in the von Mises stress space and are applicable to ductile metals such 

steel (Chen and Han, 1988). Isotropic hardening is typically implemented for a single loading 
condition, i.e. compressing a column to failure, while kinematic hardening is useful for 
cyclic loadings or combining different loading states, e.g., cold bending followed by loading to 
collapse. In this paper because of the cyclic loading implemented to the system, kinematic hardening 
plasticity law is used to model the reinforcement steel behaviour. 

Isotropic hardening is represented with an expansion of the von Mises ellipsoid as the effective stress,       (Fig. 2.2), where: + (σ − σ ) + (σ − σ )                             

follows OAB and then springs back along BR as shown in Fig. 2.2a and Fig. 2.2
b is equal to Poisson’s ratio, ν, which is assumed equal to 0.30 for elastic deformation 

or plastic deformation. The presence of residual stresses after cold bending is denoted with 
the offset of point R from the origin. 

Hardening with residual stresses from cold bending: (a) stress-strain curve, (b) isotropic hardening 
with expanding yield surface, and (c) kinematic hardening with shifting yield surface (Gao and Moen, 2010)

g is defined with the same Von Mises ellipsoid employed for isotropic hardening. 
However as the stresses exceed σ      along AB in Fig. 2.2c, the center of the yield surface 
permanently shifts to accommodate the imposed stress. The shifting yield surface i

behaviour than isotropic hardening (Fig. 2.2b). The new location of the yield 
surface is defined by the backstress components Δσ  and Δσ . 
After the yield surface has shifted, unloading occurs elastically along B to R, terminating at a nonzero 
residual stress. If the steel is now loaded again in the same direction as the original loading (again 

c), the apparent yield stress is increased. However, if the steel is loaded in 
direction along OA (i.e. −σ1 and −σ3), the yield surface (dashed ellipsoid) is reached with 

a lower apparent yield stress. This asymmetric yield behaviour has been documented in experiments 
and is commonly referred to as the Bauschinger effect (Chajes et al., 1963). It is hypothesized that the 
cyclic nature of the loadings applied to cold-bend members, initiating with plastic bending, followed 
by elastic springback, and then applied load in service, requires a combination of isotropic and 

dening to accurately simulate structural behaviour. A finite element parameter study 
follows which explores how the choice of plasticity law and the inclusion or exclusion of residual 
stresses and effective plastic strains from cold-bending influences load-deformation response
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2.3. Concrete modelling 
2.3.1 Concrete in compression 
 
The origin of the concrete model goes back to (Drawin and Pecknold, 1974). In modern terminology, 
it describes a nonlinear elastic–plastic damage model with a softening range. Since it is based on one- 
and two-dimensional experiments, originally on those of (Karsan and Jirsa, 1969; Kupfer et al., 1969), 
its character is rather empirical. It is exactly this property that makes it attractive for theoretical, 
normative and experimental additions. 
The model is orthotropic in the principal stress directions of the biaxial state. Its advantage clearly lies 
in its compact formulation through introduction of equivalent uniaxial strains. This leads to a 
description for monotonic as well as for cyclic processes using only four material parameters and a 
series of rules. In the present work, several aspects of the model are modified with respect to (MC 90 
CEB-FIP, 1990) the latter probably being today’s most widely accepted basis for reinforced concrete 
analyses. 
 
2.3.2. Monotonic loading 
The stress–strain relationship is defined in the principal stress directions (i) using equivalent uniaxial 
strains. Here a constitutive law originally published by (Saenz, 1964) will be used: 
 
 σ =                                 , ε  ≤ ε  ≤  0                                                 (2.13) 

 
 
But the model in (MC 90 CEB-FIP, 1990) may also be employed without loss of accuracy. In Eqn. 
2.13, ε   denotes the equivalent uniaxial strain at the biaxial strength σ  , the latter depending on the 
uniaxial compression strength f  and the ratio of the principal stresses α =       (σ ≥ σ ). E  is 
Young’s modulus at ε  = 0 and E  stands for the secant modulus at ε  . The strain softening branch 
starts as a straight line at σ   and ends with 0.2σ   at ε  = (1 + n)ε  : 
 
 {ε   ,σ  } ⇒ {(1 + n)ε   , 0.2σ  }                                                        (2.14) 
 
 
According to (Drawin and Pecknold, 1974) the number n has been chosen to 3.0, and the condition has 
been assumed: 
      ≥ 2                                                                                     (2.15) 
 
 
Most important from the modern understanding of strain softening processes (Bazant and Cedolin, 
1980) or (MC 90 CEB-FIP, 1990) is the fact that the constitutive description Eqn. 2.13 and Eqn. 2.14 
in the fracture limit holds only for diffuse fracture processes, in which the crushing energy G  as scale-
independent material parameter of concrete is predominantly formed by contributions G   from 
(uniformly) distributed microcracking processes. Whenever strain localization as source of 
compression failure appears (Vonk, 1992), or must be captured by a particular analysis, the then 
predominant part G   of the total localized crushing energy renders the description Eqn. 2.13 and Eqn. 
2.14 scale-dependent. To counteract this ill-posedness, the factor n in Eqn. 2.14 has to be modified 
such that the volume-specific crushing energy content, the integral below the stress–strain curve in 
Fig. 2.3, equals 
 g  =           for  (1 + n)ε  ≤ ε  ≤ ε                                                   (2.16) 



Figure 2.4. Constitutive law of concrete in 
 
Herein, l   denotes a suitable internal length scale, e.g. the dimension of the applied finite elements 
perpendicular to the localization 
suppressed, then the description 
compression failure with localization. In spite of such deficiencies, the model may yield good results 
for all problems in which localization phenomena in compression failure are not dominant.
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The basic assumption for load cycles stipulates that the monotonic stress
Eqn. 2.14 forms an envelope for all cyclic actions. To them, all plastic and damaging mechanisms 
including energy dissipation are related. If a particular point 
curve has been reached, where the strain reverses, the backwards path starts, as in classic plasticity, 
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A brief review of the model follows: Obviously, because of 
start immediately at the origin(ε
until 0.4 σ   concrete generally is considered as line
strain curve from (MC 90 CEB
locus of the common points determines the reloading direction, which becomes flatter (with growing 

Constitutive law of concrete in principal stress system (Noh et al., 2003)

denotes a suitable internal length scale, e.g. the dimension of the applied finite elements 
perpendicular to the localization zone (Polling and Kratzig). Often this modification 
suppressed, then the description Eqn. 2.13 and Eqn. 2.14 will be unable to correctly describe 
compression failure with localization. In spite of such deficiencies, the model may yield good results 
for all problems in which localization phenomena in compression failure are not dominant.
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damage) for increasing strain. The locus of the turning points controls the energy dissipation such that 
the lower σ   lies, the larger the dissipa
 
 
3. MODELING 
 
The finite element analysis is carried out by 3D solid elements with 4 or 3 integration points for wall 
and soil elements. Truss element is used for rebars which is embedded in the concrete elements.
 
The finite element mesh of the retaining wall is shown in 
filling soil affecting the behaviour
supported rigidly from the base and vertical boundaries are held in horizontal 
Durmus, 2009). In this study, small elements are used especially for the retaining wall
models close to it on which stress and strain are very important.
 
Some models generated to consider the effect of friction angle of the soil in the maximum deflection 
of the wall’s top point during the ground acceleration of El Centro earthq
history analysis of quay walls with and without counterfort is investigated by the ground acceleration 
of El Centro earthquake record 
maximum 0.5g. Rayleigh damping 
 

Figure 3.1
 
 

Figure 3.2.
 
 

The soil-structure interaction was considered in the model by means of two
contact/separation algorithm has been used at the structure interfaces with the soil to take into 
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damage) for increasing strain. The locus of the turning points controls the energy dissipation such that 
lies, the larger the dissipation becomes (Noh et al., 2003).  

The finite element analysis is carried out by 3D solid elements with 4 or 3 integration points for wall 
and soil elements. Truss element is used for rebars which is embedded in the concrete elements.

The finite element mesh of the retaining wall is shown in Fig. 3.1 It is assumed that that the length of 
behaviour of retaining wall is fivefold of the wall height (5H), the wall is 

supported rigidly from the base and vertical boundaries are held in horizontal direction (Gursoy
. In this study, small elements are used especially for the retaining wall

models close to it on which stress and strain are very important. 

Some models generated to consider the effect of friction angle of the soil in the maximum deflection 
of the wall’s top point during the ground acceleration of El Centro earthquake record. Then the time 
history analysis of quay walls with and without counterfort is investigated by the ground acceleration 
of El Centro earthquake record Fig. 3.2 the ground acceleration records are scaled to PGA of 
maximum 0.5g. Rayleigh damping coefficients (Bathe, 1982) are calculated for these models.

 

gure 3.1. Finite element mesh of the retaining wall. 

Figure 3.2. Ground acceleration of El Centro earthquake 

structure interaction was considered in the model by means of two surfaces. A frictional 
contact/separation algorithm has been used at the structure interfaces with the soil to take into 
consideration the nonlinearity state of the soil-wall interactions. These two surfaces can transmit 
contact pressure and frictional shear stress. The surfaces can separate from each other and could not 
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4. RESULTS 
4.1. Time history of the principle stress    in the bottom of wall: 
 
The time history of the normal stress σ  is shown in Fig. 4.1 during the earthquake. It is clear that the 
maximum of the σ  happens nearly to the maximum PGA of the earthquake record. 
 
 

 
 

 

 

 
Figure 4.1. Principle stress    in the bottom of wall 

 

The relative displacement between top and bottom of the wall during the earthquake is shown in Fig. 
4.2. 

 
Figure 4.2. Relative displacement of wall’s top point  

 
4.2. Effect of friction angle on active soil pressure during the earthquake 
Two models are generated with the same geometric parameter and material behaviour, the only 
deferent is the amount of friction angle of the soil. The response of these two structures is 
demonstrated in Fig. 4.3. It can be seen that by increase in the amount of friction of the soil the top 
wall point displacement decrease during the earthquake. 
 

 
Figure 4.3. Seismic behaviour of wall with different amount of friction angle. 

0

0.02

0.04

0.06

0.08

0.1

0.12

-5 5 15 25 35

R
el

at
iv

e 
 

di
sp

la
ce

m
en

t o
f  

w
al

l's
  t

op
 p

oi
nt

 (m
)

Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30 35

R
el

at
iv

e 
di

sp
la

ce
m

en
t o

f  
w

al
l's

  t
op

 p
oi

nt
 (m

)

Time (s)

φ=60˚

φ=30˚

-5

0

5

10

15

20

-5 5 15 25 35

σ z
(M

Pa
)

Time (s)



4.3. Effect of counterfort on seismic response of the wall’s top point 
The comparison of using counterfort is demonstrated in the Fig. 4.4. Two models with the same 
volume of concrete material are made to compare the seismic behaviour of the quay walls with or 
without counterfort. The geometry specification of these two blocks is shown in Table 4.1. and the 
material parameters are the same with Table 4.2. 
 

 

Figure 4.4. Seismic behaviour of wall with or without counterfort 
 
 

Table 4.1. Wall property of the model 
 

Wall property 
Without counterfort With counterfort 

Value (m) 
Wall-base width 5.3 5.3 
Wall-toe width 1.8 2.05 
Wall-top thickness 0.3 0.3 
Wall-bottom thickness 0.7 0.45 
Wall-heel thickness 0.8 0.8 
Wall-height 8 8 
Counterfort thickness - 0.3 
L-Shaped block length 4.3 4.3 
Total concrete volume 33.02 (m3) 32.61 (m3) 

 
 

Table 4.2. soil property of the models 
 

Soil Property Units Value 
Elastic modulus MPa 20 
Poisson’s ratio - 0.4 
Friction angle degree 30 or 60 
Cohiession KPa 0 
Total unit weight KN/m3 18 
Coefficient of the earth pressure at rest K0 0.5 

 
 
5. CONCLUSION 
 
The seismic behaviour of L-shaped retaining wall is investigated by 3D modeling of the wall and the 
soil behind it considering nonlinear behaviour of soil, concrete and reinforcement materials in addition 
to soil- structure interaction effect. By increasing the amount of friction angle of the soil, the relative 
displacement of the wall and the soil deformations during the earthquake are decreased. Moreover, it 
can be concluded that the usage of counterfort in this type of structures will reduce the structural 
seismic response, help the system to behave more effectively and make the design more economic. 
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