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SUMMARY
The purpose of this study is to develop a method for finding the optimal configuration of Maxwell-type dampers
which maximize the equivalent damping factor of a multi-degrees-of-freedom structural system. The equivalent
damping factor defined by the energy-consuming ratio is evaluated stochastically based on the energy response
of the structural system under a stationary random excitation. In this study, two types of random excitation
models are considered: a white noise with a flat spectrum and a filtered noise with one predominant frequency. It
is shown that the optimal distribution of the damping coefficients is closely proportional to that of the stiffness of
the Maxwell elements. The effectiveness of the optimized damper system is also demonstrated through the
response analysis for several observed earthquake excitations.
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1. INTRODUCTION

The Maxwell-type damper represents in this study a type of a supplemental damper which can be
modeled as the Maxwell element consisting of a spring and a dashpot in a series. A viscous or
visco-elastic damper installed with an elastic brace, for example, can be expressed and analyzed by
using this Maxwell-type damper model (Hatada et al. 2000, Singh et al. 2003, Chen et al. 2010). Since
the performance of the Maxwell-type damper could be reduced by the softness of its spring element, it
has been an important issue to design the Maxwell-type dampers installed in a structure so as to
maximize their performances. In this point of view, the purpose of this study is to develop a method
for finding the optimal configuration of the Maxwell-type dampers which maximize the equivalent
damping factor of a multi-degrees-of-freedom structural system. The equivalent damping factor is
selected as the objective function of the optimization problem and evaluated by the energy-consuming
ratio for the stationary response process of the structural system subjected to stationary random ground
excitations. It is expected that response indices of all stories and all modes are weighted automatically
and summarized to the equivalent damping factor based on their contributions to the energy
dissipation of the whole structural system. In this study, two types of inputs given as white and
non-white stationary random excitations are considered and compared each other on the effectiveness
of the dampers optimized for them. Furthermore, the effectiveness is also examined for several
non-stationary excitations of observed ground motions.

2. FORMULATION

The N -story structural model investigated in this study is shown in Fig. 1. iM , iK and iC denote
the mass, the stiffness, and the inherent damping coefficient of the i th story, respectively. The
viscous damper installed in the i th story is modeled as a Maxwell element consisted of a spring with
a stiffness DiK and a serially connected dashpot with a damping coefficient DiC . Let ( )iX t denote
the relative displacement of the i th story with respect to the base, and 1( ) ( )i iY t Y t denote the



elongation of the spring in the i th Maxwell element as shown in Fig. 1.
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Figure 1. N -story structural model with Maxwell dampers

The equation of motion for the structural model subjected to a ground-level excitation 0 ( )X t is given
by

0[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{1}DM X C X K X K Y M X       (2.1)

where [ ]M , [ ]K and [ ]C represent the mass, the stiffness and the damping matrices, respectively, in
the relative coordinate system with respect to the base; [ ]DK is the stiffness matrix made by
replacing iK in [ ]K with DiK ; { }X and { }Y are row vectors with components iX and iY ,
respectively; and {1} is a vector whose components are all unity. A dot over a quantity indicates the
time derivative. The restoring force of the spring DiK balances with the damping force generated by
the dashpot DiC . This relation can be expressed by the following equation:

[ ]{ } [ ]({ } { })D DK Y C X Y   (2.2)

where [ ]DC is the damping matrix made by replacing DiK in [ ]DK with DiC . In the state space
composed of the state vector { } {{ } { } { } }T T T T TZ X X Y  , Eqns. (2.1) and (2.2) are combined
together and give the following differential equation:

{ } [ ]{ } { }Z A Z B  (2.3)

where
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and [ ]I is the identity matrix. Assuming that the input ground motion 0 ( ) ( )X t W t is a stationary
white noise (WN) with zero mean and a constant power spectral density 0S , the variance-covariance
matrix of { }Z given by [ ] [{ }{ } ]T

ZZ E Z Z  obeys the following equation (Matsuda et al. 2006):

[ ] [ ][ ] [ ][ ] [ ]T
ZZ ZZ ZZA A B      (2.5)
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and 0[ ]S is a matrix whose elements are all 0S . The operator E means the ensemble average.
When the stationary response process is considered, the left-hand side of Eqn. (2.5) converges to zero
and [ ]ZZ can be obtained by solving the following matrix linear equation:

[ ][ ] [ ][ ] [ ] [0]T
ZZ ZZA A B     (2.7)

The equilibrium equation of energy for the structural system can be obtained by the integration of the
scalar product of Eqn. (2.1) in both-hand sides with the velocity vector { }X with respect to time over
the duration DT :

  0
0 0
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By using Eqn. (2.2), we can simplify Eqn. (2.8) as follows:
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KE , PE , F DE , D DE , and IE represent, the kinematic energy, the potential energy, the dissipated
energy by the inherent viscous damping of the frame, that of by the Maxwell damper, and the
earthquake input energy, respectively. Taking the ensemble average in stationary response of Eqn.
(2.9) gives

F D D D IE E E  (2.11)

where
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a bar over a quantity denotes the ensemble average of the quantity, and subscripts of parentheses
indicate a component of the matrix. The variances and covariances in Eqn. (2.12) are given by the
corresponding components of [ ]ZZ . The ensemble averages of KE and PE are given by
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Since (0) ( ) .K K DE E T const  and (0) ( ) .P P DE E T const  in the stationary response, the first term
of the left-hand side of Eqn. (2.9) vanishes in Eqn. (2.11).

The equivalent damping coefficient is evaluated by following formula:

max/ (4 )eqh E E  (2.14)

where maxE and E denote the average of maximum potential energy and the average of the
dissipated energy in one cycle due to the damping, respectively. These two quantities are evaluated as
follows:

max , ( ) ( / )K P F D D D eq DE E E E E E T T      (2.15)

where eqT is the equivalent natural period estimated by the following Rayleigh quotient:

   2 [ ] / 2eq i i i P
i

T M E X X E  (2.16)

In this study, the equivalent damping factor eqh is selected as the performance index to be maximized
by the optimization of the damper configuration. The two parameters characterizing the Maxwell
damper in the i th story, DiK and DiC , are non-dimensionalized as follows:

/ , / 2i Di i i Di i iK K C M K   (2.17)

where i and i denote the non-dimensional stiffness coefficient and damping coefficient,
respectively. The non-dimensional damping coefficients { } of installed Maxwell dampers are
chosen as independent variables of the optimization problem. The optimal configuration of Maxwell
dampers { }opt is defined as that which maximizes the equivalent damping factor eqh under given
non-dimensional stiffness coefficients { } . The { }opt is obtained numerically by means of the
quasi-Newton method.

The white noise ( )W t used as the input 0 ( )X t with a constant power spectral density over an
infinite bandwidth is ideal and easy to handle in analytical approaches. However, it is of course more
natural to consider that ground motions have their own particular characteristics. To model and
express such characteristics, we introduce another simple input ground motion model called as the
pseudo-acceleration (PA) model (Matsuda 2006). The PA model is defined as a stationary
pseudo-acceleration response process of a single-degree-of-freedom (SDOF) system with a natural
angular frequency g and a damping factor gh subjected to a white noise ( )W t with a constant
power spectral density 0S . The input ground motion 0 ( )X t is given by using the response process

gX of the SDOF system as follows:

2
0 ( ) ( ), 2 ( )g g g g g g g gX t X t X h X X W t           (2.18)

The power spectral density function (PSDF) of the PA model is given by

0

2
2

2 2 2 2 2 2

4
( )

( ) 4

g g
gX

g g g

h
S

h

 
 

   


 
 (2.19)

where 22
0 0/ (4 ) [ ( )]g g gS h E X t    . The PSDF

0
( )XS  has one predominant frequency at around

g  and its bandwidth is controlled by gh . The response process of the N -story structural model
subjected to the PA input motion model can be obtained by solving Eqns. (2.1) and (2.2) together with
Eqn. (2.18). Introducing another extended state vector { } {{ } { } { } }T T T T T

g gZ X X Y X X   , the
same form of matrix equation as Eqn. (2.7) for the extended variance-covariance matrix [ ]ZZ in the



stationary response process is obtained, where the constant matrices [ ]A and [ ]B are replaced by
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The equivalent damping factor for the PA model input can also be obtained by Eqn. (2.14). Therefore,
the optimal configuration of Maxwell dampers { }opt can be defined and obtained in the same
manner as for the case of the WN input described previously.

3. NUMERICAL RESULTS

The N -story structural model considered in this study is configured as follows: The masses { }M are
equal in all stories; The stiffness distribution { }K with a given fundamental period 1T is defined so
as to induce an equal inter-story drift in all stories under static application of the shear forces for the
seismic design in the Japanese Building Code (BCJ 2011); The damping coefficients { }C are
proportional to { }K and have a certain damping factor for the first mode 1h . Table 1 shows the
properties of a five-sotry structural model to be investigated hereafter in this study with 1 1.0 [sec]T 
and 1 0.02h  .

Table 1. Properties of 5-story structural model

i 1 2 3 4 5

M i /M 1
* 1.000 1.000 1.000 1.000 1.000

K i /K 1 (=C i /C 1)
* 1.000 0.927 0.807 0.636 0.404

T i [sec] 1.000 0.393 0.251 0.188 0.151

h i 0.020 0.051 0.080 0.107 0.133

* K 1/M 1=577 [1/sec
2
], C 1/M 1=3.68 [1/sec]

Figure 2 shows the relations between the non-dimensional damping coefficients { } and the
corresponding equivalent damping factor eqh under the WN input. The dependences of eqh on i
are shown in Figure 2(a) for the cases that only one damper, for simplicity, is installed in the whole
structural system with 0.5i  . A damper installed in a lower story gives a higher eqh and a higher
maximum of eqh with respect to i . The Figure 2(b) shows the effects on eqh of the stiffness 1 of
a damper installed in the first story. A higher damping is achieved by a higher 1 . It means that the
spring of the Maxwell element with a higher stiffness can transmit a larger damping force to the frame
and induce efficiently the damping effect. Although the eqh for other numbers and locations of
dampers are omitted to show here, the same dependencies are observed on i and i : the eqh has a
maximum with respect to each of i and the maximum value increases with the increase of i . This
observation supports the possibility of the optimization of Maxwell dampers which maximize the
damping factor of the structural system.



Figure 2. Dependence of equivalent damping factor on non-dimensional damping coefficient

Table 2 lists { }opt for all possible locations of one or more (up to five) dampers and the
corresponding damping factors of the five-story structural model subjected to the WN. In those cases,
the non-dimensional stiffnesses { } of Maxwell dampers are set to a constant value of 0.5 for all
stories. It is observed that a larger number of dampers can give a higher damping factor and lower
stories are more efficient for the dampers to be installed in. Figure 3 shows the distribution of dampers
and their effect on the structural response for the case of five dampers which give the maximum
damping in Table 2. In Figure 3(a), the distribution of the optimal damping coefficients { }opt is
compared with that of the stifnesses of Maxwell dampers { }DK . In this case, { } is almost
proportional to { }DK . It is reasonable because the springs of the Maxwell elements with higher
stiffnesses can transmit larger damping forces. In Figure 3(d), the correlation between { }opt and
{ }DK is examined for other random configurations of the structural parameters: one hundred sets of

1T , { }M , and { } for five-story structural models are taken from uniform distributions of

10 1log [ 1.0,1.0]T   , 1/ [0.8,1.2]iM M  , and [0.5,1.5]i  , respectively. There is observed a strong
correlation between 1/i  for the optimal configurations and 1/Di DK K with a correlation
coefficient of 0.940. It could be possible to simplify the optimum problem by using the relation that
{ }opt is closely proportional to { }DK . Figure 3(b) and (c) show the reductions of the inter-story
drifts and absolute accelerations, respectively, in analytically evaluated root-mean-square values
compared with those of without dampers. The inter-story drifts are reduced by more than 50% in all
stories. In absolute accelerations, the upper stories which have larger absolute accelerations without
dampers get larger reductions. The maximum reduction, about 50%, is gained at the top story.

Table 2. Optimal damping coefficients of Maxwell dampers

n /N b 1 b 2 b 3 b 4 b 5 h eq n /N b 1 b 2 b 3 b 4 b 5 h eq

5/5 0.729 0.663 0.591 0.487 0.321 0.122 0.652 0.617 0.074

0.688 0.638 0.582 0.478 0.111 0.657 0.571 0.070

0.693 0.642 0.587 0.322 0.105 0.616 0.567 0.066

0.703 0.650 0.488 0.334 0.099 0.667 0.486 0.065

0.710 0.578 0.481 0.341 0.094 0.629 0.480 0.061

0.650 0.574 0.477 0.335 0.090 0.663 0.360 0.057

0.658 0.619 0.577 0.094 0.562 0.476 0.057

0.676 0.633 0.486 0.090 0.620 0.352 0.054

0.688 0.577 0.482 0.085 0.565 0.360 0.050

0.675 0.631 0.342 0.083 0.478 0.358 0.043

0.634 0.570 0.471 0.081 0.648 0.050

0.678 0.578 0.337 0.078 0.612 0.047

0.627 0.572 0.339 0.074 0.562 0.043

0.689 0.488 0.351 0.072 0.480 0.037

0.635 0.480 0.343 0.069 0.369 0.030

0.565 0.475 0.351 0.064 0/5 0.023
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Figure 3. Distribution of optimal dampers and their effect on inter-story drifts and absolute accelerations

In Figure 3, the optimal dampers { }opt designed for the WN input are investigated on their
effectiveness under the same WN input. However, it is likely that the building with the dampers will
experience ground motions with different characteristics from those of the assumed input motions in
the process of their design. It is worth investigating the effectiveness of those dampers under the
unexpected input motions. For this purpose, we use four observed ground motions: the acceleration
records of Kobe (1995 Kobe earthquake), El Centro (1940 Imperial Valley earthquake), Hachinohe
(1968 Tokachi-oki earthquake), and Takatsuki (2004 Kii-hanto-oki earthquake). All records are so
standardized as to give a maximum velocity of 50 cm/sec. The PA models of stochastic input
processes are also generated from those four records. The parameters of the PA models obtained by
using the non-linear least square fitting method are listed in Table 3 and the corresponding PSDFs of
the PA models are shown in Figure 4 together with those of the target records.

Table 3. Parameters of the PA models

sg

[cm/sec
2
]

wg

[rad/sec]

T g (=2p/wg )

[sec]
h g

(a) Kobe 72.7 7.65 0.82 0.25

(b) El Centro 75.2 7.52 0.84 0.84

(c) Hachinohe 58.6 5.51 1.14 0.94

(d) Takatsuki 64.8 4.69 1.34 2.00

As mentioned in the previous section, the optimal dampers { }opt for the PA model input can also be
obtained by the same way as for the WN input. If we can predict the characteristics to some extent of
future ground motions at the planning site, it could be more reasonable and effective to use the optimal
dampers turned for the appropriately fitted PA model to the estimated ground motions. Thus, in this
point of view, two types of dampers optimized for the WN and the PA model (denoted hereafter by
WN-tuned and PA-tuned, respectively), are compared in Figure 5 on their effectiveness through their
achieved equivalent damping factors under three types of input motions: the WN, the PA model, and
the observed records (denoted hereafter by WN-input, PA-input, and OBS-input, respectively). The
equivalent damping factor eqh for the OBS-input is calculated by using Eqn. (2.14) in which the
ensemble average is replaced by the time average over the time required for the structure to dissipate
95% of the whole input energy.
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In Figure 5, the horizontal axis indicates the fundamental period 1T of the five-story structural model.
It is noted that the fundamental period have affects on the distribution of stiffnesses { }K and
therefore on the configuration of the optimal dampers { }opt . The WN-tuned dampers (denoted by
circles) are always superior to the PA-tuned dampers (denoted by triangles) for the WN-input, and
vice versa for the PA-input. However, those differences are not notable besides the case of (a) Kobe.
This is supposed because the bandwidth of the Kobe record is relatively narrow as compared with
those of other three records and the discrepancy from the WN is larger than others. It can be said that
the WN-tuned dampers are effective even for non-WN input with reasonably wide bandwidth.
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Figure 5. Equivalent damping factors for three types of input ground motion models



The eqh for the WN-input has almost a constant value over all 1T . On the other hand, the eqh for the
PA-input has a tendency to increase with the increase of 1T . Each of the PA models has a
predominant period 2 /g gT   of around 1.0 sec as shown in Table 3. If the fundamental period 1T
is longer than the predominant period gT , the higher modes with periods shorter than 1T are excited
more strongly so that the predominant input energy at around gT is dissipated efficiently by those
higher modes. In the case of 1 gT T , the higher modes make less contribution to the energy
dissipation and induce the low damping factor.

Considering all the difference between the response spectrum of the observed records and that of the
corresponding PA model, it can be said that the eqh for the PA-input gives a good approximation of
that for the OBS-input as shown in Figure 5. It should be noted that the former is evaluated
stochastically for the stationary response process, while the latter is for the non-stationary
deterministic response process. Therefore, this also demonstrates that the optimal dampers tuned for
the stationary stochastic input can work effectively for the non-stationary deterministic input.

4. CONCLUDING REMARKS

This paper presented the procedure to obtain the optimal configuration of Maxwell-type dampers
installed in a multi-story structure so as to maximize the equivalent damping factor of the whole
structural system. The equivalent damping factor as the objective function of the optimization is
evaluated stochastically by the energy-consuming ratio during the stationary response process of the
structure subjected to two types of random excitations: the WN with a flat spectrum and the PA model
with a single predominant frequency. It was shown that the optimal dampers tuned for the WN input
can also exhibit the efficiency under non-WN inputs with rather wide bandwidths. Moreover, it was
found that the optimal distribution of non-dimensional damping coefficients of the Maxwell dampers
is closely proportional to that of the stiffnesses of those spring elements. Finally, the effectiveness of
the optimal dampers designed for a stationary random process was shown for non-stationary observed
ground motions through the comparison between the expected and achieved equivalent damping
factors.
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