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structure is designed using the simplified design procedure developed by Chae (2011) to achieve a 
performance objective of 1.5% story drift and 2.5% story drift under the DBE and maximum 
considered earthquake (MCE), respectively. The MCE ground motion is represented by a response 
spectra that has a 2% probability of exceedance in 50 years, and the DBE ground motion is 2/3rd the 
intensity of the MCE ground motion. (FEMA 2003). The 3-story building was scaled using a scale 
factor of 0.6 for the study since a reduced scale model of the building will be constructed and tested in 
the laboratory in future research studies. 
 

   
                             (a)                                          (b) 

Figure 2.1. Prototype 3-story building structure for real-time hybrid simulations: (a) floor plan; (b) elevation 
 
The members of the MRF are proportioned using a weak beam-strong column design. Yielding is 
expected to occur predominately at the ends of the MRF beams and at the base of the columns in the 
first story of the MRF and DBF under the DBE. The beams and diagonal bracing members in the DBF 
have pin-ended connections. The member size for the 0.6-scale building is summarized in Table 2.1. 
 
Table 2.1. Member size for 0.6-scale building 

Story 
(Floor 
Level) 

MRF DBF Gravity Frame 

Column Beam Column Beam 
Diagonal 
bracing 

Column Beam 

1 W8X67 W18X46 W10X33 W10X30 - W8X48 W8X40 

2 W8X67 W14X38 W10X33 W10X30 W6X20 W8X48 W8X40 

3 W8X67 W10X17 W10X33 W10X30 W6X20 W8X48 W8X40 

 
 
3. REAL-TIME HYBRID SIMULATIONS  
 
The real-time hybrid simulations of this study are conducted at Lehigh NEES Real-Time Multi-
Directional (RTMD) Equipment Site. Figure 3.1 shows a schematic of the real-time hybrid simulations 
for this study. Real-time hybrid simulation combines physical testing and numerical simulation, such 
that the dynamic performance of the entire structural system can be considered during the simulation. 
In this paper, the MR dampers are modeled as an experimental substructure while the remaining part 
of the structural system is modeled analytically (and referred to as the analytical substructure). During 
the real-time hybrid simulation, the coupling between the experimental and analytical substructures is 
achieved by maintaining compatibility and equilibrium at the interface between these substructures. 
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1.0m/sec with three servo-valves. Each servo-valve has a maximum flow rate of 2082 lpm (550 gpm) 
at 20.7MPa (3000 psi). A 534kN load cell is installed between the horizontal steel section and the 
damper piston to directly measure the force developed in the damper. The current going into the 
damper is controlled by a pulse width modulation (PWM) type current driver manufactured by 
Advanced Motion Controls (30A8). The PWM servo-amplifier can supply current to the electrical 
circuit up to 30A by driving the DC motor at a high rate of switching frequency (22kHz). 
 
 
4. CONTROL ALGORITHM  
 
In this study, four different semi-active controllers are used: i) linear quadratic regulator (LQR); ii) 
sliding mode control (SMC); iii) decentralized bang-bang (DBB) control; and iv) phase angle control 
(PAC). A more detailed description and design procedure for these semi-active control algorithms 
applied to the 3-story building structure can be found in Chae (2011). The maximum command current 
input to the damper  is 2.5A. For the passive control of an MR damper, a constant current of 2.5A 
is supplied to the damper, while an on-off type command current (i.e., either 0.0A or 2.5A) is used for 
the semi-active controllers. 
 
 
5. GROUND MOTIONS  
 
Five ground motions among 44 far-field ground motions in FEMA P695 (ATC 2009) were selected 
for the real-time hybrid simulations and are listed below in Table 5.1. The ground motions are scaled 
to the DBE level using the procedure by Somerville et al. (1997). Since the structure is scaled down 
with a geometric scale factor of 0.6, the time axis for the ground motion is scaled by √0.6 during each 
real-time hybrid simulation to satisfy similitude laws, where the scaled structure is assumed to have 
the same material properties and amplitude of acceleration as the prototype structure. Response spectra 
of these scaled ground motions are shown in Figure 5.1. 
 
Table 5.1. Ground motions for real-time hybrid simulations 

EQ name Year Station DBE scale factor 

Superstition Hills 1987 Poe Road (temp) 1.71 

Duzce, Turkey 1999 Bolu 0.64 

Landers 1992 Coolwater 2.15 

Imperial  
Valley 

1979 El Centro Array #11 1.95 

Northridge 1994 Canyon Country-WLC 1.16 

 

 
Figure 5.1 Response spectrum of ground motions scaled to DBE 
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6. REAL-TIME HYBRID SIMULATION RESULTS  
 
The five different ground motions and five different control strategies considered in the real-time 
hybrid simulations to evaluate the performance of the structural control strategies resulted in a total of 
25 real-time hybrid simulations being conducted. A more rational assessment of the control strategies 
is based on the statistics of the response results for the various ground motions to account for the 
record-to-record variability of ground motions.  
 
Table 6.1. Comparison of median maximum story drift from real-time hybrid simulations (RTHS) and numerical 
simulations (OpenSees)  

Control 
Median maximum story drift (%) 

1st story 2nd story 3rd story 
No damper (OpenSees) 1.10 1.77 2.49 

Passive 
RTHS 1.17 1.33 1.52 

OpenSees 1.18 1.36 1.48 

LQR 
RTHS 1.11 1.37 1.63 

OpenSees 1.16 1.40 1.53 

SMC 
RTHS 1.14 1.34 1.52 

OpenSees 1.15 1.37 1.49 

DBB 
RTHS 1.16 1.34 1.55 

OpenSees 1.15 1.38 1.51 

PAC 
RTHS 1.15 1.38 1.63 

OpenSees 1.13 1.37 1.52 
 
Table 6.2. Comparison of median maximum absolute acceleration from real-time hybrid simulations (RTHS) 
and numerical simulations (OpenSees) 

Control 
Median maximum absolute acceleration (g) 

1st floor 2nd floor 3rd floor 
No damper (OpenSees) 0.65 0.68 0.67 

Passive 
RTHS 0.51 0.56 0.63 

OpenSees 0.46 0.56 0.61 

LQR 
RTHS 0.47 0.52 0.58 

OpenSees 0.45 0.52 0.62 

SMC 
RTHS 0.47 0.56 0.62 

OpenSees 0.45 0.52 0.60 

DBB 
RTHS 0.51 0.56 0.63 

OpenSees 0.44 0.55 0.61 

PAC 
RTHS 0.50 0.56 0.60 

OpenSees 0.51 0.53 0.60 
 
The median of the maximum story drift and maximum absolute acceleration from the real-time hybrid 
simulations are given in Tables 6.1 and 6.2, respectively. When the building has MR dampers 
installed, it is seen that the performance of the building is improved for all control algorithms. These 
results clearly show the benefit of using dampers to suppress the vibration of the building. However, 
the median maximum story drifts for the various semi-active controllers do not show significant 
differences. The median maximum first story drift for the passive control case is slightly larger than 
that for the semi-active control cases, while the median maximum second and third story drifts are 
slightly lower for the passive control case than for the semi-active control cases.  
 
Similar to the story drift results, no significant difference between the results for the various 
controllers is observed in the median maximum absolute accelerations. The maximum absolute 
acceleration is used to evaluate the non-structural component behavior and potential damage in the 
building. For the maximum absolute acceleration, the LQR controller has a slightly better performance 
than the passive control for all three floors. The median value of the maximum absolute acceleration at 
the 3rd floor level, where the maximum acceleration is observed, is about 7.5% less than that for the 
passive control case. However, the maximum 3rd story drift for the LQR controller is increased by 



about 7.2% compared to the passive control case, illustrating a trade-off between the maximum 
displacement and maximum absolute acceleration response.  
 

 

Figure 6.1. Comparison of story drifts between RTHS and OpenSees; 
Duzce EQ ground motion, LQR control 

 

 

Figure 6.2. Comparison of the 2nd story MR damper response 
(Duzce ground motion; LQR Control)  
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Figure 6.3. Comparison of the 3rd story MR damper response 

(Duzce ground motion; LQR Control)  
 

Numerical simulations were also conducted using OpenSees with the Maxwell Nonlinear Slider 
(MNS) MR damper model (Chae et al. 2012a and 2012b) to check and compare with the results from 
the real-time hybrid simulations. The median responses from the numerical simulations are included in 
Tables 6.1 and 6.2. Good agreement is observed between the real-time hybrid simulation results and 
the numerical simulation results. Figures 6.1 through 6.3 compare the story drift and the response of 
MR dampers when the structure is subjected to the 1999 Duzce, Turkey earthquake. In the 
comparison, the LQR controller is used for the control of the MR dampers. Again, the results from 
real-time hybrid simulation show good agreement with the results from OpenSees, validating the 
results of the real-time hybrid simulations of this study. More comparisons between the real-time 
hybrid simulation and OpenSees can be found in Chae (2011). 
 
 
7. CONCLUSIONS 
 
In this paper real-time hybrid simulations were performed on a 3-story building with MR dampers to 
assess the effectiveness of various structural control algorithms on enhancing structural performance 
under seismic loading. Real-time hybrid simulations were conducted, and the results were validated 
through numerical simulations with OpenSees. In order to account for record-to-record variability in 
the ground motions, five different ground motions were selected and scaled to the DBE hazard level, 
and the response of the building was studied with this ensemble of ground motions. The statistical 
results for response from the real-time hybrid simulation showed that the overall performance of semi-
active controllers is similar to the passive controller for the 3-story building used in this study. No 
significant improvement of the structural performance was observed by using the semi-active control 
algorithms compared to using passive control. 
 
It should be noted however that the conclusions made in this paper is based on the 3-story building 
structure with a limited number of input ground motions and semi-active controllers. To derive more 
general conclusions on the performance of semi-active controllers, it is necessary to use a larger 
number of ground motions and to include more semi-active controllers that can consider the 
nonlinearity of structural systems. Moreover, the effect of user-defined variables in the semi-active 
control algorithm, such as  and  in the LQR (Chae 2011), need to be investigated because the 
performance of semi-active controllers can be different, depending on the values for the elements in 
these weight matrices. Finally, the geometry of the structure (e.g., building height, floor plan, plan 
layout of lateral load resisting frames) needs to be investigated. 
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