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leading to the ideal damper coefficient (Coptm) given by  
 

௢௣௧௠ܥ  ൌ ௞
ఠబ
ට ଶାఈ
ଶሺଵାఈሻమ

 (2.2) 

 
If a linear viscous damper with such coefficient is considered, the new structural frequency ω and the 
new structural damping ξoptm are determined according to the following expressions: 
 

 ߱ ൌ ߱଴ට
ଶሺଵାఈሻ
ଶାఈ

 (2.3) 

 
 ξ௢௣௧௠ ൌ ఈ

ସ√ଵାఈ
 (2.4) 

 
2.1.2. Passive non-linear viscous dampers  
In this work the non-linear viscous dampers were considered to have a force/velocity relationship 
dependent on the damper coefficient CNL and velocity coefficient αNL. Considering v the velocity of 
the structure, the force in the damper Fdamper is given by 
 
ௗ௔௠௣௘௥ܨ  ൌ  ሻ  (2.5)ݒሺ݊݃݅ݏఈಿಽ|ݒ|ே௅ܥ
 
The velocity coefficient αNL usually varies between 0.3 and 1 in seismic applications. In this study a 
coefficient αNL=0.5 was considered. For the non-linear passive damper, there is not an analytical 
formula that gives the optimum damper coefficient. In this case, the design of the non-linear damper 
depends not only on the structural properties, but also on the expected response (meaning that it 
depends on the seismic input). When designing a structure, it is intended to have an expected structural 
response near to the design limit. This means that the non-linear damper should be designed to work in 
that range in order to maximize its efficiency. 
 
Taking into account that the objective of this work is to compare the responses between several control 
strategies, there was a need to develop a process to adequately design the non-linear dampers. One 
process that provided good results can be described as follows: 

1. First, simulate the linear passive control system and determine the peak response velocity; 
2. This peak velocity is considered as the estimated velocity for the non-linear passive design 

(vestim); 
3. The damper coefficient is found so that the non-linear damper has the same force as the linear 

damper at the estimated velocity (Eqn. 2.6). 
 
A sensitivity analysis was done in order to understand whether a variation in Eqn. 2.6 would enhance 
the efficiency of the non-linear semi-active system. It was concluded that a raise of 10% in the damper 
coefficient (Eqn. 2.7) would provide better results. This is a consequence of the estimated velocity 
being different from the response velocity. 
 
Another process was considered which consisted in an iterative process where the damper coefficient 
was determined using the simulated response velocity of the non-linear damper. Nonetheless, the 
process proved to be very time consuming and the improvement was small. So Eqn. 2.7 was employed 
to design non-linear passive dampers. 
 
ே௅ܥ  · ௘௦௧௜௠ఈಿಽݒ ൌ ௢௣௧௠ܥ · ௘௦௧௜௠ݒ  ൌ൐ ே௅ܥ ൌ ௢௣௧௠ܥ ·  ௘௦௧௜௠ଵିఈಿಽ (2.6)ݒ
 
ே௅ܥ  ൌ 1.1 · ௢௣௧௠ܥ ·  ௘௦௧௜௠ଵିఈಿಽ (2.7)ݒ
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3. ARTIFICIAL ACELEROGRAMS 
 
To compare the efficiency of the control systems the current European seismic design code (EN1998-
1) was considered. In Fig. 3.1 it is possible to see the Eurocode 8 spectra for the various seismic events 
(eg. A-1 means soil A type 1). Also, the average (between the 10 generated acelerograms for each 
seismic event) artificial spectra are represented (eg. Art.A-1 means average artificial acelerograms 
spectra for soil A type 1). The design acceleration on type A ground was considered to be 3m/s2. 
 

 
 

Figure 3.1. Eurocode 8 spectra and average artificial generated spectra  
 
 
4. NUMERICAL SIMULATIONS  
 
The developed numerical simulations involved a 1-DOF structure with different rigidity ratios and 
fundamental periods. Each pair of values of rigidity ratio and fundamental period characterizes one 
single structure. Each of these structures was subjected to 10 artificial acelerograms for each type of 
seismic event (the averaged value was considered for the results analysis). The structural inherent 
damping was considered to be 3%. In this problem a bracing system is added, meaning that the 
structural response depends not only on the fundamental period but also on the bracing ratio of 
rigidity.  
 
In this study, the objective is to evaluate the effect of several control strategies in reducing the seismic 
response for every structure and every seismic input. For this purpose, 4 different types of structural 
protection (different bracing connection) were considered: 
  

1. Optimum passive linear damper; 
2. Passive non-linear damper (αNL=0.5). To design this damper Eqn. 2.7 was employed. The 

estimated velocity was taken as equal to the average peak velocity simulated with the 
optimum passive linear damper; 

3. Semi-active damper with the control law described in Eqn. 2.8; 
4. Infinitely rigid connection between bracing system and structure. 

 
For every structure and every artificial acelerogram, the peak displacement (dmax

i) and the peak control 
force (Fmax) were determined. It’s worth mentioning that, since the peak displacement is independent 
of the structural mass, only the peak control force needs to be normalized to the respective structural 
gravity force (i.e., divide the calculated control force by mg). 
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5. RESULTS  
 
In Fig. 5.1 it is possible to see an example of the detailed results for the seismic input type 1 for soil A. 
It can be observed that the semi-active damper has, generally, a lower peak displacement than the 
passive linear damper, which is a consistent result with those available in the literature (Kurino et al. 
2003). It can also be observed that the maximum displacements decrease with the increasing of the 
ratio of rigidity, and the rigid connection scheme exhibits the lowest reduction of displacements for the 
same rigidity ratio augmentation. As regard to the magnitude of the control force, it can be concluded 
that both passive viscous dampers exhibit similar behavior and the semi-active scheme reaches twice 
the force of the viscous dampers. Rigid connection responds with very high control force response. 
 
In order to compare the performance of the different structural schemes, the semi-active system was 
selected as the reference method to control seismic vibrations. The rigid connection scheme was not 
considered because clearly is not an interesting solution. Figures 5.2 to 5.4 show the ratio between the 
semi-active and linear/non-linear passive control responses for the different seismic input. In these 
graphs, blue regions are those where the semi-active response is lower (ratio below 1). From these 
results it is possible to observe the full scope sensitivity of the parameters involved. Namely it can be 
seen that: 

1. The semi-active system exhibits lower structural displacements in the region of the constant 
spectral acceleration branch (maximum amplification). For this reason, in type 2 seismic input 
the blue region (typically where the semi-active responds with lower displacements than the 
non-linear passive system) the peak displacement quotient is narrower than in the type 1 
seismic input; 

2. The semi-active system most efficient region corresponds typically to situations where the 
displacement quotient is close to 0.9 and the force quotient is close to 2. This means that, 
comparing the semi-active scheme with the passive non-linear damper, when the semi-active 
system is more efficient the needed control force doubles for the achievement of 10% 
reduction in displacements; 

3. The non-linear viscous damper is more efficient in the regions of lower amplification and 
rigidity ratio; 

4. When the rigidity ratio increases the semi-active most efficient region enlarges. This mean 
that semi-active system relative efficiency increases with the ratio of rigidity. 

 
 
6. CONCLUSIONS 
 
This study simulated the response of a well-known semi-active system and compared it with passive 
control strategies for structural frames. The choice of the structural protection scheme depends on 
several parameters, namely: 

1. Structural fundamental period; 
2. Bracing rigidity ratio; 
3. Soil and seismic input type; 
4. Design criteria (displacement, force and others if necessary). 

  
The semi-active system exhibited a maximum improvement of about 10% in some cases. However, 
this improvement was achieved by doubling the peak amplitude of control force. Therefore, it can be 
concluded that semi-active systems should be properly reasoned to mitigate seismic vibrations. In 
particular, the results demonstrated that, taking this studied example, the semi-active strategy is 
adequate for controlling buildings when the following criteria are met: 

1. Structural properties are within the regions with displacement quotient marked at blue: 
a. Typically structures with fundamental periods in the constant spectral acceleration 

branch (maximum amplification). This is most probable when seismic event type 1 is 
the most critical for the design; 

b. Bracings constructed have high rigidity ratio; 
2. The control force does not condition the design, so only the structural response is critical.  



 

 

 
 

Figure 5.1. Detailed results for soil A type 1 
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Figure 5.2. Comparison between non-linear passive and semi-active strategies - Soil A and B type 1 and 2 
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Figure 5.3. Comparison between non-linear passive and semi-active strategies - Soil C and D type 1 and 2 
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Figure 5.4. Comparison between non-linear passive and semi-active strategies - Soil E type 1 and 2 
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